Skip to main content
Advanced Search

Filters: Types: Journal Citation (X) > partyWithName: Jayne Belnap (X) > Extensions: Citation (X)

45 results (30ms)   

View Results as: JSON ATOM CSV
The Grand Staircase—Escalante National Monument (GSENM) contains a rich diversity of native plant communities. However, many exotic plant species have become established, potentially threatening native plant diversity. We sought to quantify patterns of native and exotic plant species and cryptobiotic crusts (mats of lichens, algae, and mosses on the soil surface), and to examine soil characteristics that may indicate or predict exotic species establishment and success. We established 97 modified-Whittaker vegetation plots in 11 vegetation types over a 29,000 ha area in the Monument. Canonical correspondence analysis (CCA) and multiple linear regressions were used to quantify relationships between soil characteristics...
In dryland ecosystems, the timing and magnitude of precipitation pulses drive many key ecological processes, notably soil water availability for plants and soil microbiota. Plant available water has frequently been viewed simply as incoming precipitation, yet processes at larger scales drive precipitation pulses, and the subsequent transformation of precipitation pulses to plant available water are complex. We provide an overview of the factors that influence the spatial and temporal availability of water to plants and soil biota using examples from western USA drylands. Large spatial- and temporal-scale drivers of regional precipitation patterns include the position of the jet streams and frontal boundaries, the...
1. Desertification negatively impacts a large proportion of the global human population and > 30% of the terrestrial land surface. Better methods are needed to detect areas that are at risk of desertification and to ameliorate desertified areas. Biological soil crusts are an important soil lichen-moss-microbial community that can be used toward these goals, as (i) bioindicators of desertification damage and (ii) promoters of soil stability and fertility. 2. We identified environmental factors that correlate with soil crust occurrence on the landscape and might be manipulated to assist recovery of soil crusts in degraded areas. We conducted three studies on the Colorado Plateau, USA, to investigate the hypotheses...
thumbnail
Four methods for measuring quantities of 12 plant-available nutrients were compared using three sandy soils in a series of three experiments. Three of the methods use different ion-exchange resin forms-bags, capsules, and membranes-and the fourth was conventional chemical extraction. The first experiment compared nutrient extraction data from a medium of sand saturated with a nutrient solution. The second and third experiments used Nakai and Sheppard series soils from Canyonlands National Park, which are relatively high in soil carbonates. The second experiment compared nutrient extraction data provided by the four methods from soils equilibrated at two temperatures, "warm" and "cold." The third experiment extracted...
Categories: Publication; Types: Citation, Journal Citation; Tags: Soil Science
thumbnail
In this study, we examined N gas loss as nitric oxide (NO) from N-fixing biologically crusted soils in Canyonlands National Park, Utah. We hypothesized that NO gas loss would increase with increasing N fixation potential of the biologically crusted soil. NO fluxes were measured from biologically crusted soils with three levels of N fixation potential (Scytonema-Nostoc-Collema spp. (dark)>Scytonema-Nostoc-Microcoleus spp. (medium)>Microcoleus spp. (light)) from soil cores and field chambers. In both cores and field chambers there was a significant effect of crust type on NO fluxes, but this was highly dependent on season. NO fluxes from field chambers increased with increasing N fixation potential of the biologically...
We estimated global cyanobacterial biomass in the main reservoirs of cyanobacteria on Earth: marine and freshwater plankton, arid land soil crusts, and endoliths. Estimates were based on typical population density values as measured during our research, or as obtained from literature surveys, which were then coupled with data on global geographical area coverage. Among the marine plankton, the global biomass of Prochlorococcus reaches 120 × 10^12 grams of carbon (g C), and that of Synechoccus some 43 × 10^12 g C. This makes Prochlorococcus and Synechococcus, in that order, the most abundant cyanobacteria on Earth. Tropical marine blooms of Trichodesmium account for an additional 10 × 10^12 g C worldwide. In terrestrial...
Recovery rates of cyanobacterial-lichen soil crusts from disturbance were examined. Plots were either undisturbed or scalped, and scalped plots were either inoculated with surrounding biological crust material or left to recover naturally. Natural recovery rates were found to be very slow. Inoculation significantly hastened recovery for the cyanobacterial/green algal component, lichen cover, lichen species richness, and moss cover. Even with inoculation, however, lichen and moss recovery was minimal. Traditional techniques of assessing recovery visually were found to underestimate time for total recovery. Other techniques, such as extraction of chlorophyll a from surface soil and measurement of sheath material accumulation,...
thumbnail
Heavy visitor use in many areas of the world have necessitated development of ways to assess visitation impacts. Arches National Park recently completed a Visitor Experience and Resource Protection (VERP) plan. Integral to this plan was developing a method to identify biological indicators that would both measure visitor impacts and response to management actions. The process used in Arches for indicator selection is outlined here as a model applicable to many areas facing similar challenges. The steps were: (1) Vegetation types most used by visitors were identified. Impacted and unimpacted areas in these types were sampled, comparing vegetation and soil factors. (2) Variables found to differ significantly between...
A physical model was developed to explain threshold friction velocities u*t for particles of the size 60–120 μm lying on a rough surface in loose soils for semiarid and arid parts of the United States. The model corrected for the effect of momentum absorption by the nonerodible roughness. For loose or disturbed soils the most important parameter that controls u*t is the aerodynamic roughness height z 0. For physical crusts damaged by wind the size of erodible crust pieces is important along with the roughness. The presence of cyanobacteriallichen soil crusts roughens the surface, and the biological fibrous growth aggregates soil particles. Only undisturbed sandy soils and disturbed soils of all types would...
thumbnail
In drylands of southeastern Utah, USA, the invasive exotic grass Bromus tectorum L. occurs in distinct spatial patterns suggesting soil control of ecosystem susceptibility to invasion. To improve our understanding of these patterns, we examined performance of B. tectorum in relation to additions of water, KCl, MgO, and CaO at seventeen 1600 m2 sites distributed across a calcareous soil gradient in Canyonlands National Park. Water additions resulted in a 57% increase in B. tectorum establishment. Fall establishment was significantly correlated with silt and clay content in wet plots but not in dry plots, suggesting that texture effects on B. tectorum establishment patterns may be greater in wet years than in dry...
thumbnail
Biological soil crusts are an integral part of dryland ecosystems. We monitored the cover of lichens and mosses, cyanobacterial biomass, concentrations of UV-protective pigments in both free-living and lichenized cyanobacteria, and quantum yield in the soil lichen species Collema in an undisturbed Mojave Desert shrubland. During our sampling time, the site received historically high and low levels of precipitation, whereas temperatures were close to normal. Lichen cover, dominated by Collema tenax and C. coccophorum, and moss cover, dominated by Syntrichia caninervis, responded to both increases and decreases in precipitation. This finding for Collema spp. at a hot Mojave Desert site is in contrast to a similar...
In southeastern Utah, Bromus tectorum occurs where Hilaria jamesii is dominant and rarely where Stipa hymenoides/S. comata dominate. To determine whether this distribution is due to soil characteristics or microhabitat, we transplanted H. jamesii soil to a Stipa site and vice versa during a severe drought (2001) and a wetter year (2002). Additionally, we planted B. tectorum under H. jamesii and Stipa canopies, with or without H. jamesii litter, and with or without herbivory. Bromus tectorum emergence and biomass in reciprocal transplants were similar at both sites; there were no site differences for all microhabitat treatments. Being under a plant canopy increased emergence in 2001 and decreased survival during...
Bromus tectorum L. is a non-native, annual grass that has invaded western North America. In SE Utah, B. tectorum generally occurs in grasslands dominated by the native perennial grass, Hilaria jamesii (Torr.) Benth. and rarely where the natives Stipa hymenoides Roem. and Schult. and S. comata Trin. & Rupr. are dominant. This patchy invasion is likely due to differences in soil chemistry. Previous laboratory experiments investigated using soil amendments that would allow B. tectorum to germinate but would reduce B. tectorum emergence without affecting H. jamesii. For this study we selected the most successful treatments (CaCl2, MgCl2, NaCl and zeolite) from a previous laboratory study and applied them in the field...
thumbnail
Biological soil crusts, a community of cyanobacteria, lichens, and mosses that live on the soil surface, occur in deserts throughout the world. They are a critical component of desert ecosystems, as they are important contributors to soil fertility and stability. Future climate scenarios predict alteration of the timing and amount of precipitation in desert environments. Because biological soil crust organisms are only metabolically active when wet, and as soil surfaces dry quickly in deserts during late spring, summer, and early fall, the amount and timing of precipitation is likely to have significant impacts on the physiological functioning of these communities. Using the three dominant soil crust types found...
The role of the cyanobacterium Microcoleus vaginatlls in cold-desert soil crusts is investigated using scanning electron microscopy. Crusts from sandstone-, limestone-, and gypsum-derived soils are examined. When dry, polysaccharide sheath material from this cyanobacterium can be seen winding through and across all three types of soil surfaces, attaching to and binding soil particles together. When wet, sheaths and living filaments can be seen absorbing water, swelling and covering soil surfaces even more extensively. Addition of negatively charged material, found both as sheath material and attached clay particles, may affect cation exchange capacity of these soils as well. As a result of these observations, we...
Friction threshold velocities (FTVs) were determined for biological soil crusts in different stages of recovery. Particles on the surface of crusts that had been relatively undisturbed for at least 20 years were found to have significantly higher FTVs than those that had been disturbed 5, 10 or 1 years previously (376, 87, and 46 cm sec-1, respectively). FTV's for crust breakage was also much higher for undisturbed crusts when compared to the previously disturbed crusts (573, 148, and 88 cm sec-1, respectively). All crusted surfaces were more stable than bare sand, which had an FTV of 16 cm sec-1. Disturbance treatments were then applied to the three crustal classes. Disturbance significantly reduced the FTVs of...
Anthropogenic activity is causing dramatic changes in the nitrogen (N) cycle in many ecosystems. Most research has focused on the increase in N input caused by atmospheric deposition and invasion of N-fixing species, and on their effects on resource availability and species composition. However, in contrast to many ecosystems experiencing large increases in N input, many arid ecosystems are experiencing loss of nutrients due to land-use change. An important component of many arid ecosystems on a worldwide basis is the microbiotic crust, a biological soil crust composed of lichens, cyanobacteria, mosses, and algae. Nitrogen fixation by lichens and cyanobacteria comprising the crust is the primary source of N input...
Biological soil crusts (biocrusts) cover up to 60–70% of the soil surface in grasslands rehabilitated during the “Grain for Green� project implemented in the hilly Loess Plateau region in 1999. As biocrusts fix nitrogen (N), they are an important part of restoring soil fertility. We measured nitrogenase activity (NA) in biocrusts from sites rehabilitated at six different time periods to estimate 1) the effects of moisture content and temperature on NA in biocrusts of different ages and 2) the potential N contribution from biocrusts to soils and plants in this region. Results show that NA in the biocrusts was mostly controlled by the species composition, as the activity of biocrusts dominated by free-living...
thumbnail
Biological soil crusts arrest soil erosion and supply nitrogen to arid ecosys- tems. To understand their recovery from disturbance, we studied performances of Collema spp. lichens relative to four experimental treatments plus microtopography of soil pedicels, oriented north-northwest to south-southeast in crusts. At sites in Needles (NDLS) and Island in the Sky (ISKY) districts of Canyonlands National Park, lichens were transplanted to NNW, SSE, ENE, WSW, and TOP pedicel faces and exposed to a full-factorial, randomized block experiment with four treatments: nutrient addition (P and K), soil stabilization with polyacrylamide resin (PAM), added cyanobacterial fiber, and biweekly watering. After 14.5 mo (NDLS) and...
thumbnail
Tamarisk species (genus Tamarix), also commonly known as saltcedar, are among the most successful plant invaders in the western United States. At the same time, tamarisk has been cited as having enormous economic costs. Accordingly, local, state, and federal agencies have undertaken considerable efforts to eradicate this invasive plant and restore riparian habitats to pre-invasion status. Traditional eradication methods, including herbicide treatments, are now considered undesirable, because they are costly and often have unintended negative impacts on native species. A new biological control agent, the saltcedar leaf beetle (Diorhabda elongata), has been released along many watersheds in the western US, to reduce...


map background search result map search result map Choosing Indicators of Natural Resource Condition: A Case Study in Arches National Park, Utah, USA Dynamics of cover, UV-protective pigments, and quantum yield in biological soil crust communities of an undisturbed Mojave Desert shrubland Response of desert biological soil crusts to alterations in precipitation frequency. Treatment effects on performance of N-fixing lichens in disturbed soil crusts of the Colorado Plateau Comparison of Methods for Nutrient Measurement in Calcareous Soils: Ion-Exchange Resin Bag, Capsule, Membrane, and Chemical Extractions NO gas loss from biologically crusted soils in Canyonlands National Park, Utah Performance of Bromus tectorum L. in relation to soil properties, water additions, and chemical amendments in calcareous soils of southeastern Utah, USA Tamarisk biocontrol in the western United States: ecological and societal implications Choosing Indicators of Natural Resource Condition: A Case Study in Arches National Park, Utah, USA Tamarisk biocontrol in the western United States: ecological and societal implications Treatment effects on performance of N-fixing lichens in disturbed soil crusts of the Colorado Plateau Comparison of Methods for Nutrient Measurement in Calcareous Soils: Ion-Exchange Resin Bag, Capsule, Membrane, and Chemical Extractions NO gas loss from biologically crusted soils in Canyonlands National Park, Utah Performance of Bromus tectorum L. in relation to soil properties, water additions, and chemical amendments in calcareous soils of southeastern Utah, USA Response of desert biological soil crusts to alterations in precipitation frequency. Dynamics of cover, UV-protective pigments, and quantum yield in biological soil crust communities of an undisturbed Mojave Desert shrubland