Filters: partyWithName: T. Scott Rupp (X)
12 results (192ms)
Filters
Date Range
Extensions Types Contacts Categories Tag Types
|
![]() We summarize the results of a recent interagency assessment of land carbon dynamics in Alaska, in which carbon dynamics were estimated for all major terrestrial and aquatic ecosystems for the historical period (1950–2009) and a projection period (2010–2099). Between 1950 and 2009, upland and wetland (i.e., terrestrial) ecosystems of the state gained 0.4 Tg C/yr (0.1% of net primary production, NPP), resulting in a cumulative greenhouse gas radiative forcing of 1.68 × 10−3 W/m2. The change in carbon storage is spatially variable with the region of the Northwest Boreal Landscape Conservation Cooperative (LCC) losing carbon because of fire disturbance. The combined carbon transport via various pathways through inland...
Ongoing and future climate change throughout Alaska has the potential to affect terrestrial ecosystems and the services that they provide to the people of Alaska and the nation. These services include the gathering of food and fiber by Alaskan communities, the importance of ecosystems to recreation, cultural, and spiritual activities of people in Alaska, and the way that land cover and vegetation in ecosystems affect temperature and water flow (runoff, flooding etc.) throughout the state. Assessments of the effects of climate change on these “ecosystem services” have been hindered by a lack of tools (e.g. computer models) capable of forecasting future landscapes in a changing climate while taking into account numerous...
Categories: Project;
Types: Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: 2011,
Alaska,
Alaska,
Alaska,
Alaska CASC,
![]() The structure and function of Alaska's forests have changed significantly in response to a changing climate, including alterations in species composition and climate feedbacks (e.g., carbon, radiation budgets) that have important regional societal consequences and human feedbacks to forest ecosystems. In this paper we present the first comprehensive synthesis of climate-change impacts on all forested ecosystems of Alaska, highlighting changes in the most critical biophysical factors of each region. We developed a conceptual framework describing climate drivers, biophysical factors and types of change to illustrate how the biophysical and social subsystems of Alaskan forests interact and respond directly and indirectly...
![]() Caribou are an integral component of high‐latitude ecosystems and represent a major subsistence food source for many northern people. The availability and quality of winter habitat is critical to sustain these caribou populations. Caribou commonly use older spruce woodlands with adequate terrestrial lichen, a preferred winter forage, in the understory. Changes in climate and fire regime pose a significant threat to the long‐term sustainability of this important winter habitat. Computer simulations performed with a spatially explicit vegetation succession model (ALFRESCO) indicate that changes in the frequency and extent of fire in interior Alaska may substantially impact the abundance and quality of winter habitat...
![]() Modern climate change in Alaska has resulted in widespread thawing of permafrost, increased fire activity, and extensive changes in vegetation characteristics that have significant consequences for socioecological systems. Despite observations of the heightened sensitivity of these systems to change, there has not been a comprehensive assessment of factors that drive ecosystem changes throughout Alaska. Here we present research that improves our understanding of the main drivers of the spatiotemporal patterns of carbon dynamics using in situ observations, remote sensing data, and an array of modeling techniques. In the last 60 yr, Alaska has seen a large increase in mean annual air temperature (1.7°C), with the...
![]() This paper explores whether fundamental differences exist between urban and rural vulnerability to climate-induced changes in the fire regime of interior Alaska. We further examine how communities and fire managers have responded to these changes and what additional adaptations could be put in place. We engage a variety of social science methods, including demographic analysis, semi-structured interviews, surveys, workshops and observations of public meetings. This work is part of an interdisciplinary study of feedback and interactions between climate, vegetation, fire and human components of the Boreal forest social–ecological system of interior Alaska. We have learned that although urban and rural communities...
This report describes the progress made by the Integrated Ecosystem Model (IEM) for Alaska and Northwest Canada Project for the full duration of the project (September 1, 2011 through August 31, 2016).This primary goal in this project was to develop the IEM modeling framework to integrate the driving components for and the interactions among disturbance regimes, permafrost dynamics, hydrology, and vegetation succession/migration for Alaska and Northwest Canada. The major activities of the project include (1) development and delivery of input data sets, (2) model coupling, (3) evaluation and applications of fire and vegetation dynamics, (4) evaluation and application of ecosystem carbon and energy balance, (5) evaluation...
Categories: Publication;
Types: Citation;
Tags: Alaska,
Alaska CASC,
Biogeochemistry,
Carbon Dioxide,
Climate Change,
![]() The paper summarizes an end-to-end activity connecting the global climate modeling enterprise with users of climate information in Alaska. The effort included retrieval of the requisite observational datasets and model output, a model evaluation and selection procedure, the actual downscaling by the delta method with its inherent bias-adjustment, and the provision of products to a range of users through visualization software that empowers users to explore the downscaled output and its sensitivities. An additional software tool enables users to examine skill metrics and relative rankings of 21 global models for Alaska and six other domains in the Northern Hemisphere. The downscaled temperatures and precipitation...
![]() It is important to understand how upland ecosystems of Alaska, which are estimated to occupy 84% of the state (i.e., 1,237,774 km2), are influencing and will influence state‐wide carbon (C) dynamics in the face of ongoing climate change. We coupled fire disturbance and biogeochemical models to assess the relative effects of changing atmospheric carbon dioxide (CO2), climate, logging and fire regimes on the historical and future C balance of upland ecosystems for the four main Landscape Conservation Cooperatives (LCCs) of Alaska. At the end of the historical period (1950–2009) of our analysis, we estimate that upland ecosystems of Alaska store ~50 Pg C (with ~90% of the C in soils), and gained 3.26 Tg C/yr. Three...
![]() Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess...
![]() A synthesis was carried out to examine Alaska’s boreal forest fire regime. During the 2000s, an average of 767 000 ha·year–1 burned, 50% higher than in any previous decade since the 1940s. Over the past 60 years, there was a decrease in the number of lightning-ignited fires, an increase in extreme lightning-ignited fire events, an increase in human-ignited fires, and a decrease in the number of extreme human-ignited fire events. The fraction of area burned from human-ignited fires fell from 26% for the 1950s and 1960s to 5% for the 1990s and 2000s, a result from the change in fire policy that gave the highest suppression priorities to fire events that occurred near human settlements. The amount of area burned during...
![]() Wetlands are critical terrestrial ecosystems in Alaska, covering ~177,000 km2, an area greater than all the wetlands in the remainder of the United States. To assess the relative influence of changing climate, atmospheric carbon dioxide (CO2) concentration, and fire regime on carbon balance in wetland ecosystems of Alaska, a modeling framework that incorporates a fire disturbance model and two biogeochemical models was used. Spatially explicit simulations were conducted at 1‐km resolution for the historical period (1950–2009) and future projection period (2010–2099). Simulations estimated that wetland ecosystems of Alaska lost 175 Tg carbon (C) in the historical period. Ecosystem C storage in 2009 was 5,556 Tg,...
|
![]() |