Skip to main content
Advanced Search

Filters: partyWithName: L.K. Fenton (X)

15 results (112ms)   

View Results as: JSON ATOM CSV
thumbnail
A new Mars Global Digital Dune Database (MGD3) constructed using Thermal Emission Imaging System (THEMIS) infrared (IR) images provides a comprehensive and quantitative view of the geographic distribution of moderate- to large-size dune fields (area >1 kM2) that will help researchers to understand global climatic and sedimentary processes that have shaped the surface of Mars. MGD3 extends from 65??N to 65??S latitude and includes ???550 dune fields, covering ???70,000 km2, with an estimated total volume of ???3,600 km3. This area, when combined with polar dune estimates, suggests moderate- to large-size dune field coverage on Mars may total ???800,000 km2, ???6 times less than the total areal estimate of ???5,000,000...
thumbnail
Martian aeolian dunes preserve a record of atmosphere/surface interaction on a variety of scales, serving as ground truth for both Global Climate Models (GCMs) and mesoscale climate models, such as the Mars Regional Atmospheric Modeling System (MRAMS). We hypothesize that the location of dune fields, expressed globally by geographic distribution and locally by dune centroid azimuth (DCA), may record the long-term integration of atmospheric activity across a broad area, preserving GCM-scale atmospheric trends. In contrast, individual dune morphology, as expressed in slipface orientation (SF), may be more sensitive to localized variations in circulation, preserving topographically controlled mesoscale trends. We test...
thumbnail
Proctor Crater is a 150 km diameter crater in Noachis Terra, within the southern highlands of Mars. The analysis leading to the sedimentary history incorporates several data sets including imagery, elevation, composition, and thermal inertia, mostly from the Mars Global Surveyor mission. The resulting stratigraphy reveals that the sedimentary history of Proctor Crater has involved a complex interaction of accumulating and eroding sedimentation. Aeolian features spanning much of the history of the crater interior dominate its surface, including large erosional pits, stratified beds of aeolian sediment, sand dunes, erosional and depositional streaks, dust devil tracks, and small bright bed forms that are probably...
thumbnail
In a study area spanning the martian surface poleward of 50?? S., 1190 dune fields have been identified, mapped, and categorized based on dune field morphology. Dune fields in the study area span ??? 116400km2, leading to a global dune field coverage estimate of ???904000km2, far less than that found on Earth. Based on distinct morphological features, the dune fields were grouped into six different classes that vary in interpreted aeolian activity level from potentially active to relatively inactive and eroding. The six dune field classes occur in specific latitude zones, with a sequence of reduced activity and degradation progressing poleward. In particular, the first signs of stabilization appear at ???60?? S.,...
Categories: Publication; Types: Citation; Tags: Geomorphology
thumbnail
Introduction The Mars Global Digital Dune Database presents data and describes the methodology used in creating the database. The database provides a comprehensive and quantitative view of the geographic distribution of moderate- to large-size dune fields from 65? N to 65? S latitude and encompasses ~ 550 dune fields. The database will be expanded to cover the entire planet in later versions. Although we have attempted to include all dune fields between 65? N and 65? S, some have likely been excluded for two reasons: 1) incomplete THEMIS IR (daytime) coverage may have caused us to exclude some moderate- to large-size dune fields or 2) resolution of THEMIS IR coverage (100m/pixel) certainly caused us to exclude smaller...
thumbnail
A history of martian surface changes is documented by a sequence of global mosaics made up of Mars Global Surveyor Mars Orbiter Camera daily color images from 1999 to 2006, together with a single mosaic from the Mars Reconnaissance Orbiter Mars Color Imager in 2009. These observations show that changes in the global albedo patterns of Mars take place by a combination of dust storms and strong winds. Many of the observed surface changes took place along the tracks of seasonally repeating winter dust storms cataloged by Wang and Richardson (2015). These storms tend to sweep dust towards the equator, progressively shifting albedo boundaries and continuing surface changes that began before the arrival of MGS. The largest...
Categories: Publication; Types: Citation; Tags: Icarus
thumbnail
The Second International Planetary Dunes Workshop took place in Alamosa, Colorado, USA from May 18-21, 2010. The workshop brought together researchers from diverse backgrounds to foster discussion and collaboration regarding terrestrial and extra-terrestrial dunes and dune systems. Two and a half days were spent on five oral sessions and one poster session, a full-day field trip to Great Sand Dunes National Park, with a great deal of time purposefully left open for discussion. On the last day of the workshop, participants assembled a list of thirteen priorities for future research on planetary dune systems. ?? 2010.
Categories: Publication; Types: Citation
thumbnail
The Mars Global Digital Dune Database (MGD3) provides data and describes the methodology used in creating the global database of moderate- to large-size dune fields on Mars. The database is being released in a series of U.S. Geological Survey Open-File Reports. The first report (Hayward and others, 2007) included dune fields from lat 65° N. to 65° S. (http://pubs.usgs.gov/of/2007/1158/). The second report (Hayward and others, 2010) included dune fields from lat 60° N. to 90° N. (http://pubs.usgs.gov/of/2010/1170/). This report encompasses ~75,000 km2 of mapped dune fields from lat 60° to 90° S. The dune fields included in this global database were initially located using Mars Odyssey Thermal Emission Imaging System...
Categories: Publication; Types: Citation; Tags: Open-File Report
thumbnail
The Mars Global Digital Dune Database (MGD3) provides data and describes the methodology used in creating the global database of moderate- to large-size dune fields on Mars. The database is being released in a series of U.S. Geological Survey Open-File Reports. The first report (Hayward and others, 2007) included dune fields from lat 65° N. to 65° S. (http://pubs.usgs.gov/of/2007/1158/). The second report (Hayward and others, 2010) included dune fields from lat 60° N. to 90° N. (http://pubs.usgs.gov/of/2010/1170/). This report encompasses ~75,000 km2 of mapped dune fields from lat 60° to 90° S. The dune fields included in this global database were initially located using Mars Odyssey Thermal Emission Imaging System...
Categories: Publication; Types: Citation; Tags: Open-File Report
thumbnail
Introduction The Mars Global Digital Dune Database presents data and describes the methodology used in creating the database. The database provides a comprehensive and quantitative view of the geographic distribution of moderate- to large-size dune fields from 65? N to 65? S latitude and encompasses ~ 550 dune fields. The database will be expanded to cover the entire planet in later versions. Although we have attempted to include all dune fields between 65? N and 65? S, some have likely been excluded for two reasons: 1) incomplete THEMIS IR (daytime) coverage may have caused us to exclude some moderate- to large-size dune fields or 2) resolution of THEMIS IR coverage (100m/pixel) certainly caused us to exclude smaller...
Categories: Publication; Types: Citation; Tags: Open-File Report
thumbnail
The Mars Global Digital Dune Database (MGD3) provides data and describes the methodology used in creating the global database of moderate- to large-size dune fields on Mars. The database is being released in a series of U.S. Geological Survey Open-File Reports. The first report (Hayward and others, 2007) included dune fields from lat 65° N. to 65° S. (http://pubs.usgs.gov/of/2007/1158/). The second report (Hayward and others, 2010) included dune fields from lat 60° N. to 90° N. (http://pubs.usgs.gov/of/2010/1170/). This report encompasses ~75,000 km2 of mapped dune fields from lat 60° to 90° S. The dune fields included in this global database were initially located using Mars Odyssey Thermal Emission Imaging System...
Categories: Publication; Types: Citation; Tags: Open-File Report
thumbnail
The Mars Global Digital Dune Database presents data and describes the methodology used in creating the global database of moderate- to large-size dune fields on Mars. The database is being released in a series of U.S. Geological Survey (USGS) Open-File Reports. The first release (Hayward and others, 2007) included dune fields from 65 degrees N to 65 degrees S (http://pubs.usgs.gov/of/2007/1158/). The current release encompasses ~ 845,000 km2 of mapped dune fields from 65 degrees N to 90 degrees N latitude. Dune fields between 65 degrees S and 90 degrees S will be released in a future USGS Open-File Report. Although we have attempted to include all dune fields, some have likely been excluded for two reasons: (1)...
Categories: Publication; Types: Citation; Tags: Open-File Report
thumbnail
We present evidence of widespread aeolian activity in the Arabia Terra/Meridiani region (Mars), where different kinds of aeolian modifications have been detected and classified. Passing from the regional to the local scale, we describe one particular dune field in Meridiani Planum, where two ripple populations are distinguished by means of different migration rates. Moreover, a consistent change in the ripple pattern is accompanied by significant dune advancement (between 0.4-1 meter in one Martian year) that is locally triggered by large avalanche features. This suggests that dune advancement may be common throughout the Martian tropics. ?? 2011 by the American Geophysical Union.
thumbnail
The Mars Global Digital Dune Database presents data and describes the methodology used in creating the global database of moderate- to large-size dune fields on Mars. The database is being released in a series of U.S. Geological Survey (USGS) Open-File Reports. The first release (Hayward and others, 2007) included dune fields from 65 degrees N to 65 degrees S (http://pubs.usgs.gov/of/2007/1158/). The current release encompasses ~ 845,000 km2 of mapped dune fields from 65 degrees N to 90 degrees N latitude. Dune fields between 65 degrees S and 90 degrees S will be released in a future USGS Open-File Report. Although we have attempted to include all dune fields, some have likely been excluded for two reasons: (1)...
Categories: Publication; Types: Citation; Tags: Open-File Report
thumbnail
For hundreds of years, scientists have tracked the changing appearance of Mars, first by hand drawings and later by photographs. Because of this historical record, many classical albedo patterns have long been known to shift in appearance over time. Decadal variations of the martian surface albedo are generally attributed to removal and deposition of small amounts of relatively bright dust on the surface. Large swaths of the surface (up to 56 million km2) have been observed to darken or brighten by 10 per cent or more. It is unknown, however, how these albedo changes affect wind circulation, dust transport and the feedback between these processes and the martian climate. Here we present predictions from a Mars general...
Categories: Publication; Types: Citation; Tags: Nature


    map background search result map search result map Mars Global Digital Dune Database: MC2-MC29 (COPY) Mars Global Digital Dune Database: MC2-MC29 (COPY)