Skip to main content
Advanced Search

Filters: Types: Citation (X)

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > Northwest CASC > FY 2014 Projects ( Show direct descendants )

52 results (10ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
A warming climate, fire exclusion, and land cover changes are altering the conditions that produced historical fire regimes and facilitating increased recent wildfire activity in the northwestern United States. Understanding the impacts of changing fire regimes on forest recruitment and succession, species distributions, carbon cycling, and ecosystem services is critical, but challenging across broad spatial scales. One important and understudied aspect of fire regimes is the unburned area within fire perimeters; these areas can function as fire refugia across the landscape during and after wildfire by providing habitat and seed sources. With increasing fire activity, there is speculation that fire intensity and...
thumbnail
UW_Olallie_photo_metadata & image files: These are the raw timelapse photographs. The date/time stamp is inaccurate for the camera deployed in the open (at the SNOTEL) due to a programming error. This timestamp is one day early (i.e., subtract 1 day from the timestamp when using these data). Also available is metadata for two timelapse cameras and their associated snow depth poles (two visible in each camera's field of view) deployed at Olallie Meadows SNOTEL during water year 2015. One camera was deployed in the open area that is the Olallie Meadows SNOTEL station (the snow pillow is in the field of view). The other camera was deployed in the adjacent forest, approximately 60 m to the southeast of the SNOTEL....
Wildfire refugia are forest patches that are minimally-impacted by fire and provide critical habitats for fire-sensitive species and seed sources for post-fire forest regeneration. Wildfire refugia are relatively understudied, particularly concerning the impacts of subsequent fires on existing refugia. We opportunistically re-visited 122 sites classified in 1994 for a prior fire refugia study, which were burned by two wildfires in 2012 in the Cascade mountains of central Washington, USA. We evaluated the fire effects for historically persistent fire refugia and compared them to the surrounding non-refugial forest matrix. Of 122 total refugial (43 plots) and non-refugial (79 plots) sites sampled following the 2012...
thumbnail
These data were used to examine how post-fire sedimentation might change in western USA watersheds with future fire from the decade of 2001-10 through 2041-50. The data include previously published projections (Hawbaker and Zhu, 2012a, b) of areas burned by future wildfires for several climate change scenarios and general circulation models (GCMs) that we summarized for 471 watersheds of the western USA. The data also include previously published predictions (Miller et al., 2011) of first year post-fire hillslope soil erosion from GeoWEPP that we summarized for 471 watersheds of the western USA. We synthesized these summarized data in order to project sediment yield from future fires for 471 watersheds through the...
thumbnail
Hourly hydrometeorological data was collected over the 30-year period from 1984-2014 in Upper Sheep Creek, within the Reynolds Creek Experimental Watershed, Idaho, USA. These data were used to calibrate the one-dimensional Simultaneous Heat and Water (SHAW) model. These data and the SHAW calibration have previously been described in multiple publications, particularly Chauvin et al 2011 and Flerchinger et al 2016. In the dataset presented here, climate scenarios have been constructed, applied to the historic record, simulated in the SHAW model, and hydrologic results have been analyzed. These data include the following: (1) uscData. These are the historical data described above, prepared for input into the SHAW...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/2015WR017873/abstract): Spatially distributed snow depth and snow duration data were collected over two to four snow seasons during water years 2011–2014 in experimental forest plots within the Cedar River Municipal Watershed, 50 km east of Seattle, Washington, USA. These 40 × 40 m forest plots, situated on the western slope of the Cascade Range, include unthinned second-growth coniferous forests, variable density thinned forests, forest gaps in which a 20 m diameter (approximately equivalent to one tree height) gap was cut in the middle of each plot, and old-growth forest. Together, this publicly available data set includes snow depth and density observations...
thumbnail
UI_Mica_Location: Location metadata and meteorological and snow depth observations from met towers in the Mica Creek Experimental Forest. Data were collected at 7 different station sites at approximately half-hour intervals for water years 2003-2006, with discontinuous records due to equipment malfunction or damage. Stations were located within different forest harvest treatment sections, applied to the watershed in approximately 2001, including clear-cut harvest, partial harvest, and control sections (both second growth and old growth control forests). Site Data Citation for full description of the field campaign and sites. UI_Mica_met: Metadata and associated snow depth and SWE observations from 14 manual...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/hyp.11144/full): The extensive forests that cover the mountains of the Pacific Northwest, USA, modify snow processes and therefore affect snow water storage as well as snow disappearance timing. However, forest influences on snow accumulation and ablation vary with climate, topography, and land cover and are therefore subject to substantial temporal and spatial variability. We utilize multiple years of snow observations from across the region to assess forest-snow interactions in the relatively warm winter conditions characteristic of the maritime and maritime-continental climates. We (1) quantify the difference in snow magnitude and disappearance timing...
Abstract (from http://www.publish.csiro.au/WF/WF16165): Interannual variability in burn severity is assessed across forested ecoregions of the western United States to understand how it is influenced by variations in area burned and climate during 1984–2014. Strong correlations (|r| > 0.6) between annual area burned and climate metrics were found across many of the studied regions. The burn severity of individual fires and fire seasons was weakly, but significantly (P < 0.05), correlated with burned area across many regions. Interannual variability in fuel dryness evaluated with fuel aridity metrics demonstrated weak-to-moderate (|r| >0.4) relationships with regional burn severity, congruent with but weaker than...
Public Summary: The area burned by wildfires is expected to increase in many watersheds of the world over the next century as a function of climate change. Increased sedimentation due to soil erosion in burned watersheds can negatively impact downstream aquatic ecosystems and the quality and supply of water. At least 65% of the water supply in the western USA originates in watersheds covered by trees, shrubs, and/or grasses that are prone to wildfire16. Understanding how changing fire frequency, extent, and location will affect watersheds, reservoirs, and the ecosystem services they supply to communities is therefore of great societal importance. A primary threat to socio-ecological systems in this region from...
The Northwest Climate Science Conference (NW CSC) annually brings together researchers and practitioners from around the Pacific Northwest to a conference to discuss scientific results, challenges, and solutions related to climate impacts on people, natural resources, and infrastructure in the region. The NW CSC's annual conference is the region's premier opportunity for a cross-disciplinary exchange of knowledge and ideas about regional climate, climate impacts, and climate adaptation science and practice. The conference also provides a forum for discussing emerging policy and management goals, objectives, and information needs related to regional climate impacts and adaptation. Conference participants include...
Abstract (from http://jcom.sissa.it/archive/15/01/JCOM_1501_2016_A01): Whereas the evolution of snow cover across forested mountain watersheds is difficult to predict or model accurately, the presence or absence of snow cover is easily observable and these observations contribute to improved snow models. We engaged citizen scientists to collect observations of the timing of distributed snow disappearance over three snow seasons across the Pacific Northwest, U.S.A. . The primary goal of the project was to build a more spatially robust dataset documenting the influence of forest cover on the timing of snow disappearance, and public outreach was a secondary goal. Each year's effort utilized a different strategy, building...
Public land managers face the daunting task of incorporating climate change vulnerability assessments into their land use planning. This NW CSC project developed decision support tools to guide resource managers through the process of including future climate projections, climate change vulnerability assessments, and adaptation response strategies and tactics into ongoing and existing planning efforts such as FS forest plan revisions and individual project plans. The tools were developed and tested through direct engagement with resource managers. The tools guide participants through a step-wise process that provides a structured framework to help managers (1) integrate climate projections with other local information...
Abstract (from http://www.hydrol-earth-syst-sci.net/21/1/2017/): The phase of precipitation when it reaches the ground is a first-order driver of hydrologic processes in a watershed. The presence of snow, rain, or mixed-phase precipitation affects the initial and boundary conditions that drive hydrological models. Despite their foundational importance to terrestrial hydrology, typical phase partitioning methods (PPMs) specify the phase based on near-surface air temperature only. Our review conveys the diversity of tools available for PPMs in hydrological modeling and the advancements needed to improve predictions in complex terrain with large spatiotemporal variations in precipitation phase. Initially, we review...
Abstract (from http://www.sciencedirect.com/science/article/pii/S0378112716308532): Across the western United States, the three primary drivers of tree mortality and carbon balance are bark beetles, timber harvest, and wildfire. While these agents of forest change frequently overlap, uncertainty remains regarding their interactions and influence on specific subsequent fire effects such as change in canopy cover. Acquisition of pre- and post-fire Light Detection and Ranging (LiDAR) data on the 2012 Pole Creek Fire in central Oregon provided an opportunity to isolate and quantify fire effects coincident with specific agents of change. This study characterizes the influence of pre-fire mountain pine beetle (MPB; Dendroctonus...
Abstract (from http://www.bioone.org/doi/abs/10.3955/046.089.0305): It is hypothesized that climate impacts forest mosaics through dynamic ecological processes such as wildfires. However, climate-fire research has primarily focused on understanding drivers of fire frequency and area burned, largely due to scale mismatches and limited data availability. Recent datasets, however, allow for the investigation of climate influences on ecological patch metrics across broad regions independent of area burned and at finer scale. One area of particular interest is the distribution of fire refugia within wildfire perimeters. Although much recent research emphasis has been placed on high-severity patches within wildfires,...
Abstract (from http://www.nature.com/nclimate/journal/v5/n9/full/nclimate2699.html): Contemporary climate change is causing large shifts in biotic distributions1, which has the potential to bring previously isolated, closely related species into contact2. This has led to concern that hybridization and competition could threaten species persistence3. Here, we use bioclimatic models to show that future range overlap by the end of the century is predicted for only 6.4% of isolated, congeneric species pairs of New World birds, mammals and amphibians. Projected rates of climate-induced overlap are higher for birds (11.6%) than for mammals (4.4%) or amphibians (3.6%). As many species will have difficulty tracking shifting...
Abstract (from http://iopscience.iop.org/article/10.1088/1748-9326/aa6f94/meta): High temperatures and severe drought contributed to extensive tree mortality from fires and bark beetles during the 2000s in parts of the western continental United States. Several states in this region have greenhouse gas (GHG) emission targets and would benefit from information on the amount of carbon stored in tree biomass killed by disturbance. We quantified mean annual tree mortality from fires, bark beetles, and timber harvest from 2003–2012 for each state in this region. We estimated tree mortality from fires and beetles using tree aboveground carbon (AGC) stock and disturbance data sets derived largely from remote sensing. We...
thumbnail
Daily snow depth values from the UW Snoqualmie Pass site. A timelapse camera and 3 snow depth poles were deployed at the forest plot during water year 2015. Manual snow stake observations were taken in the open plot. This comparison of snow depth between the open and forest uses the daily snow depth data observed with the snow stake, rounded to 5cm, compared to the average of all visible pole values in the forest (read by eye from photos), also rounded to 5 cm. These data have been processed, aggregated and rounded. Raw photographs of the forest poles are also available. UW_Snoqualmie_snow_camera Attributes: Site - Snoqualmie, Cover - Forest or open, WY - water year 2015, Date - yyyy-mm-dd, Method - snow...
Abstract (from ScienceDirect): Altered climate and changing fire regimes are synergistically impacting forest communities globally, resulting in deviations from historical norms and creation of novel successional dynamics. These changes are particularly important when considering the stability of a keystone species such as quaking aspen (Populus tremuloides Michx.), which contributes critical ecosystem services across its broad North American range. As a relatively drought intolerant species, projected changes of altered precipitation timing, amount, and type (e.g. snow or rain) may influence aspen response to fire, especially in moisture-limited and winter precipitation-dominated portions of its range. Aspen is...


map background search result map search result map Long format snow course observations, meteorological sensor observations,locations, and associated metadata for Mica Creek, Idaho Timelapse photos at SNOTEL station, locations, and associated metadata, Ollalie Meadows, Wash., 2015 Timelapse photos, locations, and associated metadata for Snoqualmie Pass, WA Hydrologic sensitivity to climate change and aspen mortality in Upper Sheep Creek, Reynolds Creek Experimental Watershed (21st century scenarios) Climate, Wildfire, and Erosion Data, Western US Timelapse photos at SNOTEL station, locations, and associated metadata, Ollalie Meadows, Wash., 2015 Timelapse photos, locations, and associated metadata for Snoqualmie Pass, WA Long format snow course observations, meteorological sensor observations,locations, and associated metadata for Mica Creek, Idaho Hydrologic sensitivity to climate change and aspen mortality in Upper Sheep Creek, Reynolds Creek Experimental Watershed (21st century scenarios) Climate, Wildfire, and Erosion Data, Western US