Skip to main content
Advanced Search

Filters: Types: Citation (X) > Types: Map Service (X) > Types: OGC WMS Layer (X) > Extensions: Raster (X)

33 results (12ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This categorical CWD raster was developed from a project-wide CWD raster. For each of the five fracture zones, the CWD raster was partitioned into zone-specific, 10 equal-area class map, ranging from low CWD to high CWD.
thumbnail
This categorical CWD raster was developed from a project-wide CWD raster. For each of the five fracture zones, the CWD raster was partitioned into zone-specific, 10 equal-area class map, ranging from low CWD to high CWD.
thumbnail
Ten focal species cost-weighted distance (CWD) surfaces from WHCWG (2010) were combined into a single categorical raster for this project. The source focal species were: western toad, northern flying squirrel, wolverine, Canada lynx, American marten, mountain goat, American black bear, elk, mule deer, and bighorn sheep.
thumbnail
Ten focal species cost-weighted distance (CWD) surfaces from WHCWG (2010) were combined into a single categorical raster for this project. The source focal species were: western toad, northern flying squirrel, wolverine, Canada lynx, American marten, mountain goat, American black bear, elk, mule deer, and bighorn sheep.
thumbnail
A comparison of the 2017 USGS South America seismic hazard model and the 2010 USGS preliminary model was made to see how the models differ. The comparison was made as the ratio of PGA at 10% probability of exceedance in 50 years. The ratio map is included here as a geo-referenced tiff (GeoTIFF). The gridded data for the 2017 PGA at 10% probability can be found here, while the gridded data for the 2010 PGA at 10% probability can be found in the zip archive that can be downloaded using a link on this page.
thumbnail
A comparison of the 2017 USGS South America seismic hazard model and the Global Seismic Hazard Assessment Program (GSHAP) model was made to see how the models differ. The comparison was made as the ratio of PGA at 10% probability of exceedance in 50 years. The ratio map is included here as a geo-referenced tiff (GeoTIFF). The gridded data for the 2017 PGA at 10% probability can be found here, while the GSHAP data can be found here. Shedlock, K.M., Giardini, Domenico, Grünthal, Gottfried, and Zhang, Peizhan, 2000, The GSHAP Global Seismic Hazar Map, Sesimological Research Letters, 71, 679-686. https://doi.org/10.1785/gssrl.71.6.679
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for Modified Mercalli Intensity with a 50 percent probability of exceedance in 50 years. The maps and data were derived from PGA ground-motion conversions of Worden et al. (2012), and include soil amplification...
thumbnail
This categorical CWD raster was developed from a project-wide CWD raster. For each of the five fracture zones, the CWD raster was partitioned into zone-specific, 10 equal-area class map, ranging from low CWD to high CWD.
thumbnail
Ten focal species cost-weighted distance (CWD) surfaces from WHCWG (2010) were combined into a single categorical raster for this project. The source focal species were: western toad, northern flying squirrel, wolverine, Canada lynx, American marten, mountain goat, American black bear, elk, mule deer, and bighorn sheep.
thumbnail
This cost-weighted distance (CWD) raster was developed from a generalized shrub-steppe and grassland (SSGL) species guild resistance model based on 20th percentile of resistance values for the five statewide analysis (WHCWG 2010) focal species in this biome, including sage-grouse, black-tailed jackrabbit, white-tailed jackrabbit, badger, and sharp-tailed grouse.
thumbnail
7 aerial photographs were taken along the Little Missouri River in 1949. All images were geo-referenced to the 1995 digital orthophoto quarter quadrangles as described by Miller and Friedman (2009). Both the flood plain and active channel of the river were delineated on the 1995 digital orthophoto quadrangles and overlaid on rectified photos. ArcGIS was used to draw the polygons that delineate the flood plain and active channel; the delineation was saved as a SHP file. The separate images (geoTIFFs) can be viewed as a composite along with that year's channel delineation (SHP file) using a geographic information system (GIS) application. Reference: Miller, J.R., and J.M. Friedman. 2009. Influence of flow variability...
thumbnail
8 aerial photographs were taken along the Little Missouri River in 1958. All images were geo-referenced to the 1995 digital orthophoto quarter quadrangles as described by Miller and Friedman (2009). Both the flood plain and active channel of the river were delineated on the 1995 digital orthophoto quadrangles and overlaid on rectified photos. ArcGIS was used to draw the polygons that delineate the flood plain and active channel; the delineation was saved as a SHP file. The separate images (geoTIFFs) can be viewed as a composite along with that year's channel delineation (SHP file) using a geographic information system (GIS) application. Reference: Miller, J.R., and J.M. Friedman. 2009. Influence of flow variability...
thumbnail
Using data from 288 adult and yearling female elk that were captured on 22 Wyoming winter supplemental elk feedgrounds and monitored with GPS collars, we fit Step Selection Functions (SSFs) during the spring abortion season and then implemented a master equation approach to translate SSFs into predictions of daily elk distribution for 5 plausible winter weather scenarios (from a heavy snow, to an extreme winter drought year). We then predicted abortion events by combining elk distributions with empirical estimates of daily abortion rates, spatially varying elk seroprevalence, and elk population counts. Here we provide the predicted abortion events on a daily basis at a 500m resolution for the 5 different weather...
thumbnail
4 aerial photographs were taken along the Little Missouri River in 1982. All images were geo-referenced to the 1995 digital orthophoto quarter quadrangles as described by Miller and Friedman (2009). Both the flood plain and active channel of the river were delineated on the 1995 digital orthophoto quadrangles and overlaid on rectified photos. ArcGIS was used to draw the polygons that delineate the flood plain and active channel; the delineation was saved as a SHP file. The separate images (geoTIFFs) can be viewed as a composite along with that year's channel delineation (SHP file) using a geographic information system (GIS) application. Reference: Miller, J.R., and J.M. Friedman. 2009. Influence of flow variability...
thumbnail
8 aerial photographs were taken along the Little Missouri River in 1939. All images were geo-referenced to the 1995 digital orthophoto quarter quadrangles as described by Miller and Friedman (2009). Both the flood plain and active channel of the river were delineated on the 1995 digital orthophoto quadrangles and overlaid on rectified photos. ArcGIS was used to draw the polygons that delineate the flood plain and active channel; the delineation was saved as a SHP file. The separate images (geoTIFFs) can be viewed as a composite along with that year's channel delineation (SHP file) using a geographic information system (GIS) application. Reference: Miller, J.R., and J.M. Friedman. 2009. Influence of flow variability...
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for Modified Mercalli Intensity with a 2 percent probability of exceedance in 50 years. The maps and data were derived from PGA ground-motion conversions of Worden et al. (2012), and include soil amplification...
thumbnail
This cost-weighted distance (CWD) raster was developed from a generalized shrub-steppe and grassland (SSGL) species guild resistance model based on 20th percentile of resistance values for the five statewide analysis (WHCWG 2010) focal species in this biome, including sage-grouse, black-tailed jackrabbit, white-tailed jackrabbit, badger, and sharp-tailed grouse.
thumbnail
Ten focal species cost-weighted distance (CWD) surfaces from WHCWG (2010) were combined into a single categorical raster for this project. The source focal species were: western toad, northern flying squirrel, wolverine, Canada lynx, American marten, mountain goat, American black bear, elk, mule deer, and bighorn sheep.
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for Modified Mercalli Intensity with a 10 percent probability of exceedance in 50 years. The maps and data were derived from PGA ground-motion conversions of Worden et al. (2012), and include soil amplification...
thumbnail
4 aerial photographs were taken along the Little Missouri River in 1974. All images were geo-referenced to the 1995 digital orthophoto quarter quadrangles as described by Miller and Friedman (2009). Both the flood plain and active channel of the river were delineated on the 1995 digital orthophoto quadrangles and overlaid on rectified photos. ArcGIS was used to draw the polygons that delineate the flood plain and active channel; the delineation was saved as a SHP file. The separate images (geoTIFFs) can be viewed as a composite along with that year's channel delineation (SHP file) using a geographic information system (GIS) application. Reference: Miller, J.R., and J.M. Friedman. 2009. Influence of flow variability...


map background search result map search result map Shapefiles and Historical Aerial Photographs, Little Missouri River, 1939 Shapefiles and Historical Aerial Photographs, Little Missouri River, 1949 Shapefiles and Historical Aerial Photographs, Little Missouri River, 1958 Shapefiles and Historical Aerial Photographs, Little Missouri River, 1974 Shapefiles and Historical Aerial Photographs, Little Missouri River, 1982 Cost-weighted distance (CWD) categorical raster, Highway 3 West Cost-weighted distance (CWD) categorical raster, Highway 97 Central Cost-weighted distance (CWD) categorical raster, Highway 97 North Generalization of 10 focal species cost-weighted distance (CWD) categorical raster, Highway 3 East Generalization of 10 focal species cost-weighted distance (CWD) categorical raster, Highway 3 West Generalization of 10 focal species cost-weighted distance (CWD) categorical raster, Highway 97 Central Generalization of 10 focal species cost-weighted distance (CWD) categorical raster, Highway 97 South Shrubsteppe and grassland (SSGL) species guild CWD, Highway 97 Central Shrubsteppe and grassland (SSGL) species guild CWD, Highway 97 South Comparison with the 2010 USGS preliminary model Comparison with the 1999 Global Seismic Hazard Assessment (GSHAP) model Modified Mercalli Intensity, based on peak ground acceleration, with a 2% probability of exceedance in 50 years Modified Mercalli Intensity, based on peak ground acceleration, with a 50% probability of exceedance in 50 years Modified Mercalli Intensity, based on peak ground acceleration, with a 10% probability of exceedance in 50 years Predicted daily elk abortion events in southern GYE 2010, 2012, 2014 Shapefiles and Historical Aerial Photographs, Little Missouri River, 1958 Shapefiles and Historical Aerial Photographs, Little Missouri River, 1939 Shapefiles and Historical Aerial Photographs, Little Missouri River, 1982 Shapefiles and Historical Aerial Photographs, Little Missouri River, 1949 Shapefiles and Historical Aerial Photographs, Little Missouri River, 1974 Predicted daily elk abortion events in southern GYE 2010, 2012, 2014 Cost-weighted distance (CWD) categorical raster, Highway 3 West Cost-weighted distance (CWD) categorical raster, Highway 97 Central Cost-weighted distance (CWD) categorical raster, Highway 97 North Generalization of 10 focal species cost-weighted distance (CWD) categorical raster, Highway 3 East Generalization of 10 focal species cost-weighted distance (CWD) categorical raster, Highway 3 West Generalization of 10 focal species cost-weighted distance (CWD) categorical raster, Highway 97 Central Generalization of 10 focal species cost-weighted distance (CWD) categorical raster, Highway 97 South Shrubsteppe and grassland (SSGL) species guild CWD, Highway 97 Central Shrubsteppe and grassland (SSGL) species guild CWD, Highway 97 South Comparison with the 2010 USGS preliminary model Comparison with the 1999 Global Seismic Hazard Assessment (GSHAP) model Modified Mercalli Intensity, based on peak ground acceleration, with a 2% probability of exceedance in 50 years Modified Mercalli Intensity, based on peak ground acceleration, with a 50% probability of exceedance in 50 years Modified Mercalli Intensity, based on peak ground acceleration, with a 10% probability of exceedance in 50 years