Skip to main content
Advanced Search

Filters: partyWithName: California LCC Data Manager (X) > partyWithName: California Landscape Conservation Cooperative (X) > partyWithName: San Francisco Bay Joint Venture (X)

42 results (83ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Coastal ecosystems have been identified by the International Panel on Climate Change (2007) as areasthat will be disproportionally affected by climate change. Recent sea-level rise projections range from 0.57to 1.1 m (Jevrejeva et al. 2012) or 0.75 to 1.9 m by Grinsted et al. (2010) and Vermeer and Rahmstorf(2009) by 2100, which are contingent upon the ambient temperature conditions and CO2 emissions. Sealevelrise projections for San Francisco Bay are 1.24 m by 2100 (Cayan et al. 2008). The expectedaccelerated rate of sea-level rise through the 21st century will put many coastal ecosystems at risk,especially those in topographically low-gradient areas.Sea-level rise response modeling was conducted at 12 tidal salt...
Tidal marsh habitat is at high risk of severe loss and degradation as a result of human uses, sea-level rise, changes in salinity, and more frequent and extreme storms projected by climate models. Availability of habitat is a prerequisite for long-term viability of marsh bird populations and this has been modeled in a companion California Landscape Conservation Cooperative project (Veloz et al. 2011). However, habitat alone will ensure neither resilience nor recovery of depleted and threatened populations. To provide management guidance to reduce species’ vulnerability and recover depleted populations, we developed interactive population dynamic models for four key marsh species: Black Rail, Clapper Rail, Common...
The aim of this USGS program is to provide site specific sea-level rise predictions to land managers through the intensive collection of field data and innovative predictive modeling. In 2009 and 2010, thousands of elevation and vegetation survey points were collected in salt marsh at 12 sites surrounding San Francisco Bay. The elevation data was synthesized into a continuous elevation model for each site, providing land owners valuable baseline data. This site hosts the project report, pages describing each of the 12 marshes visited in this study, and maps and GIS data for all of the marshes including high-resolution digital elevation models.
This project designed a monitoring program and protocol to detect the effects of climate change on tidal marsh bird population abundance and distribution. It is a companion to “Tidal Marsh Bird Population and Habitat Assessment for San Francisco Bay under Future Climate Change Conditions” and will build on its products, enabling evaluation of the long-term viability of four tidal-marsh bird species threatened by impacts of climate change: Clapper Rail, Black Rail, Common Yellowthroat, and Song Sparrow (three endemic subspecies: San Pablo, Suisun, and Alameda). Information is available through the California Avian Data Center. See also: http://data.prbo.org/apps/sfbslr/index.php?page=lcc-page
We evaluated the biogeomorphic processes of a large (309 ha) tidal salt marsh and examined factors that influence its ability to keep pace with relative sea-level rise (SLR). Detailed elevation data from 1995 and 2008 were compared with digital elevation models (DEMs) to assess marsh surface elevation change during this time. Overall, 37 % (113 ha) of the marsh increased in elevation at a rate that exceeded SLR, whereas 63 % (196 ha) of the area did not keep pace with SLR. Of the total area, 55 % (169 ha) subsided during the study period, but subsidence varied spatially across the marsh surface. To determine which biogeomorphic and spatial factors contributed to measured elevation change, we collected soil cores...
Environmental Change Network: Current and Future Zonation PrioritizationZonation is a spatial conservation planning software tool that can take into account multiple species to create a hierarchical prioritization of the landscape. This is in contrast to other spatial conservation planning tools which may require predefined conservation targets or areas. Here, we used 199 California landbirds along with Zonation’s “core-area” algorithm to prioritize the California landscape. Species were weighted according to the California Bird Species of Special Concern criteria and probability of occurrence was discounted by distribution model and climate model uncertainty surfaces.The dataset provides priority areas for “current”...
An online decision support tool for managers, planners, conservation practitioners and scientists.The models generating these maps are the first to take into account the ability of marshes to accrete, or keep up with, rising sea levels, in the San Francisco Bay Estuary.PRBO has generated a series of scenarios to provide a range of projections to address the uncertainty in future rates of sea-level rise and suspended sediment availability.Our maps cover the entire Estuary allowing for analyses at multiple spatial scales.This tool displays maps created at a high spatial resolution using the best available elevation data. The website will be continually updated as new data becomes availableThe tool is the first to...
This set of elevation models was developed to understand current (2010) conditions of San Francisco salt marshes and for input into sea-level rise prediction models. These elevation models were built by interpolating surveyed elevation points. The elevation surveys were conducted with a Leica RX1230 Real-Time Kinematic GPS which is capable of < 2 cm vertical accuracy.
The vulnerability of species at risk from climate change is recognized as an important issue in California as well as globally. Assessing vulnerability requires information on the long-term viability of populations and understanding the influences on that viability, due to environmental drivers as well as impacts of management action. We developed population-dynamic models to assess and better understand the long-term population viability of four key, tidal marsh-dependent species, under a variety of environmental conditions, including climate change impacts. In the San Francisco Estuary, each species is represented by one or more subspecies that is entirely or mainly confined to the tidal marsh habitat in the region:...
Coastal areas are high-risk zones subject to the impacts of global climate change, with significant increases in the frequencies of extreme weather and storm events, and sea-level rise forecast by 2100. These physical processes are expected to alter estuaries, resulting in loss of intertidal wetlands and their component wildlife species. In particular, impacts to salt marshes and their wildlife will vary both temporally and spatially and may be irreversible and severe. Synergistic effects caused by combining stressors with anthropogenic land-use patterns could create areas of significant biodiversity loss and extinction, especially in urbanized estuaries that are already heavily degraded. In this paper, we discuss...
Bird community turnover for current and future climate (GFDL) based on maxent models for 198 land bird species.
Conservation priority maps based on combined bird species current and projected abundance and distribution, updated with new model with improved inputs.Point Blue Conservation Science is currently assessing the effects of sea-level rise (SLR) and salinity changes on San Francisco Bay tidal marsh ecosystems. Tidal marshes are naturally resilient to SLR, in that they can build up elevation through the capture of suspended sediment and deposition of organic material (vegetation). Thus, a “bathtub” model approach is not appropriate for assessing impacts to this dynamic habitat. Rather, dynamic accretion potential can be modeled annually based on tidal inundation, sediment availability, and the rate of organic accumulation...
These maps display the magnitude of projected future climate change in relation to the interannual variability in late 20th century CA climate. The maps show the standardized Euclidean distance between the late 20th century climate at each pixel and the future climate at each pixel. The standardization puts all of the climate variables included on the same scale and down weights changes in future climate which have had large year to year variation historically. Warmer colors indicate greater climate change and cooler colors indicate less extreme climate change.
The USGS Coastal Ecosystem Response to Climate Change (CERCC) began in 2008 to deliver sea - level rise ecological response mod- els at a scale relevant for resource managers. Work was originally focused on the San Fran- cisco Bay estuary and then expanded to en- compass other Pacific coast sites. Our goal is to provide site specific measurements and results that land managers, planners, and those concerned with the conservation of near- shore habitats can use to make well - informed climate change adaptation strategies and deci- sions.
March 19, 2014 12:00-1:00 pm PSTSpeaker Glen MacDonald, Director of the UCLA Institute for the Environment and Sustainability.This webinar presents some basics on potential rates and magnitudes of relative sea level rise along the California coast over the 21st century as influenced by climate change, tectonics and other related factors. The potential accretion rates of selected marshes relative to anticipated sea level rise will be outlined and a multidisciplinary joint USGS-UCLA project to study past, present and future marsh response to sea level changes will be described.
This project uses bottom-up modeling at a parcel scale to measure the effects of sea-level rise (SLR) on coastal ecosystems and tidal salt marshes. At selected tidal marshes, the project team will measure several parameters that will be incorporated into ArcGIS models creating comparable datasets across the Pacific coast tidal gradient with a focus on 2-4 sites in the California LCC (e.g. San Diego, San Francisco Bay Refuges). The ultimate goal is to provide science support tools for local adaptation planning from the bottom-up that may be implemented under a structured decision-making framework.Science Delivery Phase (2013): The objectives are to: (1) Disseminate site-specific baseline data and modeling results,...
Categories: Data, Project; Tags: 2011, 2013, Applications and Tools, CA, CA-Northern, All tags...
This project uses existing decision support tools (DST) in a scenario planning analysis for the South Bay Salt Ponds Restoration Project (SBSPRP) as a case study that other bayland managers can reference for best practices for using these DSTs for adaptation planning. Through substantial investment by the CA LCC and other partners, we have developed a set of DSTs that support conservation decision-making for San Francisco Estuary ecosystems (www.prbo.org/sfbayslr (link is external) and (link is external)). These tools are ideally suited to support climate-smart restoration planning for shorebird and marshbird habitat. However, the utility of these tools could be promoted through their application in an actual case...
Priority areas for conservation of tidal marsh birds given current and future environmental conditions. Maps were created using Zonation, a spatial conservation planning software tool that can take into account multiple species and scenarios to create a hierarchical prioritization of the landscape.The current (2010) and future (2030-2110) prioritization is based upon distribution and abundance models for five tidal marsh bird species which utilized avian observation data (2000 - 2009), a marsh accretion model, and physical variables (e.g. salinity, distance to nearest channel, slope, etc). Values represent the rank in which pixels were removed from the landscape using Zonation Conservation Planning software with...
In California, the near-shore area where the ocean meets the land is a highly productive yet sensitive region that supports a wealth of wildlife, including several native bird species. These saltmarshes, mudflats, and shallow bays are not only critical for wildlife, but they also provide economic and recreational benefits to local communities. Today, sea-level rise, more frequent and stronger storms, saltwater intrusion, and warming water temperatures are among the threats that are altering these important habitats.To support future planning and conservation of California’s near-shore habitats, researchers examined current weather patterns, elevations, tides, and sediments at these sites to see how they affect plants...