Skip to main content
Advanced Search

Filters: partyWithName: Arctic Landscape Conservation Cooperative (X) > Types: OGC WFS Layer (X)

398 results (19ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The Alaska ShoreZone program has been able to document Arctic coastal biologyand dynamic processes through high resolution aerial imagery, videography, andground assessments: a snapshot in time of the ever changing Arctic coast. Some ofthe most spectacular of these images have been collected in this volume, CoastalImpressions: A Photographic Journey along Alaska’s Arctic Coast. Glance throughthese pages, study and ponder over them , then close your eyes and imagine.Wipe away your preconceived notions of the Arctic and learn about the gem thatis the true Arctic coast.
thumbnail
This dataset contains rasters that represent mapped habitat suitability indices for 8 shorebird species, a raster that represents mean habitat suitability indices for all 8 species, and a raster that represents the number of species in which the habitat suitability index exceeded the selected threshold value for each pixel. The shorebird species used for this modeling effort are American Golden-Plover [AMGP], Black-bellied Plover [BBPL], Dunlin [DUNL], Long-billed Dowitcher [LBDO], Pectoral Sandpiper [PESA], Red Phalarope [REPH], Red-necked Phalarope [RNPH], and Semipalmated Sandpiper [SESA].
thumbnail
These raster datasets are output from the Geophysical Institute Permafrost Lab (GIPL) model and represents simulated mean annual ground temperature (MAGT) in Celsius, averaged across a decade, at the base of active layer or at the base of the seasonally frozen soil column. These data were generated by driving the GIPL model with a composite of five GCM model outputs for the A1B emissions scenario. The file name specifies the decade the raster represents. For example, a file named MAGT_1980_1989.tif represents the decade spanning 1980-1989. Cell values represent simulated mean annual ground temperature (degree C) at the base of the active layer (for areas with permafrost) or at the base of the soil column that is...
thumbnail
More than 35,000 lakes larger than 0.01 sq. km. were extracted from an airborne interferometric synthetic aperture radar (IfSAR) derived digital surface model acquired between 2002 and 2006 for the Western Arctic Coastal Plain of northern Alaska. The IfSAR derived lake data layer provides an improvement over previously available datasets for the study area since it is more comprehensive and contemporary. Attributes assigned to the IfSAR-derived lake dataset include: area, lake elevation, elevation in 10, 25, 50, and 100 m buffers around a lake perimeter, the difference in elevation between the lake and these various buffers, whether a particular lake had a detectable drainage gradient exceeding 1.2 m, whether a...
thumbnail
This dataset includes Snow Up Date(sudt) for northern Alaska in GeoTiff format, covering the years 1980-2012. Snow Up Date is defined as day of the start of the core snow period(day of simulation). The core snow season is defined to be the longest period of continuous snow cover in each year. The dataset was generated by the Arctic LCC SNOWDATA: Snow Datasets for Arctic Terrestrial Applications project.The simulation period runs from 1 September – 31 August. “Day-of-simulation” takes the value of “1” on 1 September, “123” on 1 January, and “365” on 31 August. “Day-of-simulation” files should be used for analysis (trend, mean, etc.).The dataset is delivered in the ZIP archive file format. Each year is output in a...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: AIR TEMPERATURE, AIR TEMPERATURE, ALBEDO, ALBEDO, Academics & scientific researchers, All tags...
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
Potential Evapotranspiration (PET): These data represent decadal mean totals of potential evapotranspiration estimates (mm). The file name specifies the decade the raster represents. For example, a file named pet_mean_mm_decadal_MPI_ECHAM5_A1B_annual_2000-2009.tif represents the decade spanning 2000-2009. The data were generated by using the Hamon equation and output from ECHAM5, a fifth generation general circulation model created by the Max Planck Institute for Meteorology in Hamburg Germany. Data are at 2km x 2km resolution, and all data are stored in geotiffs. Calculations were performed using R 2.12.1 and 2.12.2 for Mac OS Leopard, and data were formatted into geotiffs using the raster and rgdal packages. Users...
thumbnail
Average historical annual total precipitation, projected total precipitation (mm), and relative change in total precipitation (% change from baseline) for Northern Alaska. GIF formatted animation and PNG images. Maps created using the SNAP 5-GCM composite (AR5-RCP 6.0) and CRU TS3.1.01 datasets.
thumbnail
Potential Evapotranspiration (PET): These data represent decadal mean totals of potential evapotranspiration estimates (mm). The file name specifies the decade the raster represents. For example, a file named pet_mean_mm_decadal_CRU_Historical_annual_1910-1919.tif represents the decade spanning 1910-1919. The data were generated by using the Hamon equation and output from a statistically downscaled version of the Hadley Centre’s CRU TS3.0 observational dataset. Data are at 2km x 2km resolution, and all data are stored in geotiffs. Calculations were performed using R 2.12.1 and 2.12.2 for Mac OS Leopard, and data were formatted into geotiffs using the raster and rgdal packages. Users are reminded that the PET estimates...
thumbnail
This raster, created in 2010, is output from the Geophysical Institute Permafrost Lab (GIPL) model and represents simulated active layer thickness (ALT) in meters averaged across a decade. The file name specifies the decade the raster represents. For example, a file named ALT_1980_1989.tif represents the decade spanning 1980-1989. Cell values represent simulated maximum depth (in meters) of thaw penetration (for areas with permafrost) or frost penetration (for areas without permafrost). If the value of the cell is positive, the area is underlain by permafrost and the cell value specifies the depth of the seasonally thawing layer above permafrost. If the value of the cell is negative, the ground is only seasonally...
thumbnail
This raster, created in 2010, is output from the Geophysical Institute Permafrost Lab (GIPL) model and represents simulated active layer thickness (ALT) in meters averaged across a decade. The file name specifies the decade the raster represents. For example, a file named ALT_1980_1989.tif represents the decade spanning 1980-1989. Cell values represent simulated maximum depth (in meters) of thaw penetration (for areas with permafrost) or frost penetration (for areas without permafrost). If the value of the cell is positive, the area is underlain by permafrost and the cell value specifies the depth of the seasonally thawing layer above permafrost. If the value of the cell is negative, the ground is only seasonally...
thumbnail
These rasters represent output from the Boreal ALFRESCO (Alaska Frame Based Ecosystem Code) model. Boreal ALFRESCO operates on an annual time step, in a landscape composed of 1 x 1 km pixels, a scale appropriate for interfacing with mesoscale climate and carbon models. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Coverage of this dataset includes much of the state of Alaska (but does exclude Southeastern AK, Kodiak Island, portions of the Alaska Peninsula, and the Aleutian Islands)....
thumbnail
Potential Evapotranspiration (PET): These data represent decadal mean totals of potential evapotranspiration estimates (mm). The file name specifies the decade the raster represents. For example, a file named pet_mean_mm_decadal_MPI_ECHAM5_A1B_annual_2000-2009.tif represents the decade spanning 2000-2009. The data were generated by using the Hamon equation and output from ECHAM5, a fifth generation general circulation model created by the Max Planck Institute for Meteorology in Hamburg Germany. Data are at 2km x 2km resolution, and all data are stored in geotiffs. Calculations were performed using R 2.12.1 and 2.12.2 for Mac OS Leopard, and data were formatted into geotiffs using the raster and rgdal packages. Users...
To elucidate these potential “bottom up” effects of climate changes to Arctic ungulates and evaluate the trophic mismatch hypothesis, the Arctic Landscape Conservation Cooperative (ALCC), the Bureau of Land Management (BLM), the U.S. Geological Survey (USGS), Teck, Inc., and the National Park Service provided funding in 2012-14 to incorporate the calving and summer range of the Western Arctic caribou herd (WAH) into an ongoing inter-agency research and monitoring effort to examine the influences of climate change on the nutrient dynamics of caribou forages. This work is leveraging existing projects on the North Slope of Alaska that are primarily funded through the USGS Changing Arctic Ecosystems Initiative. Field...
Our overarching questions are: (1) How much of the river water and water-borne constituents (i.e. sediment, nutrients, organic matter) from the Jago, Okpilak and Hulahula rivers are coming from glacier melt? (2) How do inputs from these rivers affect the downstream ecosystems? (3) How will loss of glaciers affect these ecosystems? The study will help elucidate how inputs from glacier-dominated arctic rivers differ from unglaciated rivers, through a combination of ground work, boat work, and remote sensing. In Phase One of this study, we intend to explore the relationship between glaciers and coastal ecosystems. Our goal in this phase-one study is not to answer these questions conclusively but rather improve our...
More information is needed about species composition, abundance, or distribution of the microfauna and meiofauna living within the interstitial spaces of the littoral zones along the Beaufort Sea coast. Shorebirds depend on meiofauna for food for pre-migratory fattening and these organisms make important contributions to bioremediation of oil spills.The information obtained from this jointly-funded research can contribute to development of mitigation measures and strategies to reduce potential impacts from post-lease exploration and development. This information need extends to the lower trophic levels forming the base of these complex food webs and the biochemistry that influences these relationships. Their contributions...
The Bureau of Ocean Energy Management (BOEM) is supporting a field effort in support of a ShoreZone mapping project along the Chukchi and Beaufort coasts. Funds from the LCC will allow for the inclusion of three additional ShoreStations. Researchers will conduct ground surveys to get detailed physical and biological measurements throughout the various and often unique Chukchi and Beaufort coastal habitats. Sediment samples will be archived from each shore station for hydrocarbon analyses in the event of a local or regional oil spill. The Arctic ShoreZone Shore Stations will be added to the statewide database and made available online to the public NOAA website.
The USGS and Arctic National Wildlife Refuge Staff operate and maintain a streamgage at Hulahula River near Kaktovik, Alaska. Data from this station is necessary to complement glacier mass-balance studies and provide information necessary to project stream flow regimes under various scenarios of climate change. This project includes operation, acquiring real-time data, analysis of the data, and internet access. The gauge continues to operate as of 2017.
LCC funding for this project helped maintain a network of hydrology monitoring sites in a representative watershed of the Arctic Coastal Plain. The work was conducted within the context of climate change and impending oil and gas activities in the region, the latter of which is the impetus for focusing on the Fish Creek watershed. The project included two monitoring components:1) Beaded Stream & Lake Hydrology Monitoring (dominant habitat type within the watershed): in 6 stream/lake complex watersheds (Redworm, Hannahbear, Blackfish, Crea, Oil, and Bills creeks), continuous water level and temperature (in lakes, streams, and confluences), discrete discharge measurements, and continuous water quality (specific conductivity,...


map background search result map search result map Fish Creek Watershed Hydrology Monitoring Hydrologic Monitoring of Glacier-Influenced Watersheds (Hulahula Gage) Shorebird HSI tiff format SNOWDATA GeoTIFF Annual Snow Up Date Arctic Impressions:  A Photographic Journey Along Alaska's Arctic Coast Arctic LCC Boundary Map - PDF Western Arctic Coastal Plain, Lakes and Drainage Gradients ShoreZone Program on the North Slope of Alaska Evaluating the 'Bottom Up' Effects of Changing Habitats: Climate Changes, Vegetative Phenology, and the Nutrient Dynamics of Ungulate Forages Simulated Mean Annual Ground Temperature Stand Age Projections 2060-2069 Active Layer Thickness 2080-2089 Active Layer Thickness 2000-2009 Potential Evapotranspiration 2010-2019: ECHAM5 - A1B Scenario Potential Evapotranspiration 2050-2059: ECHAM5 - A1B Scenario Annual Precipitation Animation - RCP 6.0, Millimeters Historical Stand Age 1940-1949 Potential Evapotranspiration 1910-1919: CRU Historical Dataset Integrating studies of glacier dynamics and estuarine chemistry in the context of landscape change in the Arctic Refuge Shorebirds and Invertebrate Distribution on Delta Mudflats along the Beaufort Sea Hydrologic Monitoring of Glacier-Influenced Watersheds (Hulahula Gage) Integrating studies of glacier dynamics and estuarine chemistry in the context of landscape change in the Arctic Refuge Fish Creek Watershed Hydrology Monitoring Shorebirds and Invertebrate Distribution on Delta Mudflats along the Beaufort Sea Western Arctic Coastal Plain, Lakes and Drainage Gradients ShoreZone Program on the North Slope of Alaska Evaluating the 'Bottom Up' Effects of Changing Habitats: Climate Changes, Vegetative Phenology, and the Nutrient Dynamics of Ungulate Forages Shorebird HSI tiff format Arctic Impressions:  A Photographic Journey Along Alaska's Arctic Coast SNOWDATA GeoTIFF Annual Snow Up Date Simulated Mean Annual Ground Temperature Stand Age Projections 2060-2069 Active Layer Thickness 2080-2089 Active Layer Thickness 2000-2009 Potential Evapotranspiration 2010-2019: ECHAM5 - A1B Scenario Potential Evapotranspiration 2050-2059: ECHAM5 - A1B Scenario Historical Stand Age 1940-1949 Potential Evapotranspiration 1910-1919: CRU Historical Dataset Arctic LCC Boundary Map - PDF Annual Precipitation Animation - RCP 6.0, Millimeters