Skip to main content
Advanced Search

Filters: partyWithName: Arctic Landscape Conservation Cooperative (X)

436 results (24ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Information on the nature and distribution of permafrost is critical to assessing the response of Arctic ecosystems to climate change, because thawing permafrost under a warming climate will cause thaw settlement and affect micro-topography, surface water redistribution and groundwater movement, soil carbon balance, trace gas emissions, vegetation changes, and habitat use. While a small-scale regional permafrost map is available, as well as information from numerous site-specific large-scale mapping projects, landscape-level mapping of permafrost characteristics is needed for regional modeling and climate impact assessments. The project addresses this need by: (1) compiling existing soil/permafrost data from available...
thumbnail
The Arctic Tern completes annual epic migrations from pole to pole covering at least 40,000 kmon their round-trip journeys. They breed throughout Arctic Alaska from boreal to tundra habitatsand have their highest nesting densities inland (Lensink 1984). Arctic Terns typically choose nestsites on open ground near water and often on small islands in ponds and lakes (Hatch 2002).Arctic terns consume a wide variety of fish and invertebrate prey, fish are particularly importantduring the breeding season for feeding young (Hatch 2002). This species spends their winters(austral summers) in offshore waters near Antarctica (Hatch 2002). Alaskan Arctic Coastal Plainpopulation estimates from 2011 range from 7-12,000 (Larned...
thumbnail
The Red-necked Phalarope commonly breeds in both the Brooks Range foothills and ArcticCoastal Plain of Alaska. In Alaska, this species typically nests in wet tundra near water’s edge.It differs from the Red Phalarope in that it breeds further inland and at higher elevations (Rubegaet al. 2000). Like other phalaropes, this species depends on aquatic food sources for much of itsdiet (Rubega et al. 2000). Red-necked Phalaropes spend winter at sea in tropical waters in largenumbers off the west coast of South America (Rubega et al. 2000). Current North Americanpopulation estimate is 2.5 million with a declining trend (Morrison et al. 2006).
thumbnail
More than 35,000 lakes larger than 0.01 sq. km. were extracted from an airborne interferometric synthetic aperture radar (IfSAR) derived digital surface model acquired between 2002 and 2006 for the Western Arctic Coastal Plain of northern Alaska. The IfSAR derived lake data layer provides an improvement over previously available datasets for the study area since it is more comprehensive and contemporary. Attributes assigned to the IfSAR-derived lake dataset include: area, lake elevation, elevation in 10, 25, 50, and 100 m buffers around a lake perimeter, the difference in elevation between the lake and these various buffers, whether a particular lake had a detectable drainage gradient exceeding 1.2 m, whether a...
The Integrated Ecosystem Model (IEM) for Alaska and Northwest Canada Project integrated existing models of vegetation, disturbance, and permafrost into one complete ecosystem model for the state of Alaska and Northwest Canada.The final synchronized model will integrate existing climate, vegetation, disturbance, hydrology, and permafrost models to improve understanding of potential landscape, habitat and ecosystem change. The project’s (September 1, 2011 through August 31, 2016) primary goal was to develop the IEM modeling framework to integrate the driving components for and the interactions among disturbance regimes, permafrost dynamics, hydrology, and vegetation succession/migration for Alaska and Northwest Canada....
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
A Project
Categories: Data, Project; Tags: Project, onGoing
thumbnail
This file describes a set of outputs from the Sea Level Affecting Marshes Model (SLAMM), which consists of rasters containing SLAMM’s coastal cover categories (classes) for a study area on the Gulf of Mexico (U.S.) coast. The model was used to simulate the impact of sea level rise (SLR) on these coastal cover classes, with an emphasis on wetlands, for the “Evaluation of Regional SLAMM Results to Establish a Consistent Framework of Data and Models” project. The project was performed by Warren Pinnacle Consulting, Inc., and Image Matters LLC. The project was funded by the Gulf Coast Prairie Landscape Conservation Cooperative (LCC). A coordinated network of landscape conservation cooperatives (each an “LCC”) is being...
Categories: Data; Tags: Report, SLAMM, completed
This project used previously collected ShoreZone imagery to map nearly 1,600 km of coastline between Wales and Kotzebue. With additional mapping supported by the Arctic LCC and National Park Service, this effort completed the Kotzebue Sound shoreline, which now has been included in the state-wide ShoreZone dataset. The complete ShoreZone dataset for the region was used to conduct a coastal hazards analysis and create maps that identify areas undergoing rapid coastal erosion and areas that are sensitive to inundation by storm surge and sea level rise
Categories: Data; Tags: BEACHES, BEACHES, COASTAL AREAS, COASTAL AREAS, COASTAL LANDFORMS, All tags...
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
The Pectoral Sandpiper is one of the most abundant breeding birds on the Arctic Coastal Plain ofAlaska. They typically have low nest site fidelity which is likely related to their promiscuousmating strategy, thus nest densities are highly variable from year to year at a given site (Holmesand Pitelka 1998). In Arctic Alaska, primary breeding habitat includes low-lying ponds in a mixof marshy to hummocky tundra and nests are typically placed in slightly raised or better drainedsites (Holmes and Pitelka 1998). Pectoral Sandpipers spend their winters primarily in southernSouth America (Holmes and Pitelka 1998). The current North American population estimate is500,000 and they are believed to be declining (Morrison et...
thumbnail
Baseline (1961-1990) average winter total precipitation and projected change in precipitation for the northern portion of Alaska. For the purposes of these maps, ‘winter’ is defined as December - February. The Alaska portion of the Arctic LCC’s terrestrial boundary is depicted by the black line. Baseline results for 1961-1990 are derived from Climate Research Unit (CRU) TS 3.1.01 data and downscaled to 2km grids; results for the other time periods (2010-2039, 2040-2069, 2070-2099) are based on the SNAP 5-GCM composite using the AR5-RCP 8.5, downscaled to 2km grids.
thumbnail
Average historical annual total precipitation (inches) and projected relative change in total precipitation (% change from baseline) for Northern Alaska. 30-year averages. Handout format. Maps created using the SNAP 5-GCM composite (AR5-RCP 8.5) and CRU TS3.1.01 datasets.
thumbnail
The Gyrfalcon, the largest falcon, is an iconic bird of the circumpolar arctic and subarctic. Thisspecies nests primarily on precipitous cliff faces and typically utilizes nests built by other species(particularly Common Raven, Golden Eagle, and Rough-legged Hawk) (Booms et al. 2008).Gyrfalcon main prey includes bird species ranging in size from passerines to geese whileptarmigan are the preferred prey. Although not well documented, in winter this species movessouth throughout Canada and sometimes into the northern lower 48. Current population on theNorth Slope (tundrius subspecies) is estimated at 250 breeding pairs (USFWS 2000).
abstract
Categories: Data, Project; Tags: Project, completed
thumbnail
More than 35,000 lakes larger than 0.01 sq. km. were extracted from an airborne interferometric synthetic aperture radar (IfSAR) derived digital surface model acquired between 2002 and 2006 for the Western Arctic Coastal Plain of northern Alaska. The IfSAR derived lake data layer provides an improvement over previously available datasets for the study area since it is more comprehensive and contemporary. Attributes assigned to the IfSAR-derived lake dataset include: area, lake elevation, elevation in 10, 25, 50, and 100 m buffers around a lake perimeter, the difference in elevation between the lake and these various buffers, whether a particular lake had a detectable drainage gradient exceeding 1.2 m, whether a...
thumbnail
This file describes a set of outputs from the Sea Level Affecting Marshes Model (SLAMM), which consists of rasters containing SLAMM’s coastal cover categories (classes) for a study area on the Gulf of Mexico (U.S.) coast. The model was used to simulate the impact of sea level rise (SLR) on these coastal cover classes, with an emphasis on wetlands, for the “Evaluation of Regional SLAMM Results to Establish a Consistent Framework of Data and Models” project. The project was performed by Warren Pinnacle Consulting, Inc., and Image Matters LLC. The project was funded by the Gulf Coast Prairie Landscape Conservation Cooperative (LCC). A coordinated network of landscape conservation cooperatives (each an “LCC”) is being...
Categories: Data; Tags: Report, SLAMM, completed
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
Watersheds draining the Arctic Coastal Plain (ACP) of Alaska are dominated by permafrostand snowmelt runoff that create abundant surface storage in the form of lakes, wetlands, and beaded streams. These surface water elements compose complex drainage networks that affect aquatic ecosystem connectivity and hydrologic behavior. The 4676 km2 Fishand Creek drainage basin is composed of three watersheds that represent a gradient of theACP landscape with varying extents of eolian, lacustrine, and fluvial landforms. In each watershed, we analyzed 2.5-m-resolution aerial photography, a 5-m digital elevationmodel, and river gauging and climate records to better understand ACP watershed structureand processes. We show that...
thumbnail
This pilot project has initiated a long-term integrated modeling project that aims todevelop a dynamically linked model framework focused on climate driven changes tovegetation, disturbance, hydrology, and permafrost, and their interactions and feedbacks.This pilot phase has developed a conceptual framework for linking current state-of-thesciencemodels of ecosystem processes in Alaska – ALFRESCO, TEM, GIPL-1 – and theprimary processes of vegetation, disturbance, hydrology, and permafrost that theysimulate. A framework that dynamically links these models has been defined and primaryinput datasets required by the models have been developed.


map background search result map search result map xxxxx Report Report Western Arctic Coastal Plain, IfSAR DSM Mosaic Footprint Annual Precipitation Maps - RCP 8.5, Inches Development and Application of an Integrated Ecosystem Model for Alaska Drainage Network Structure and Hydrologic Behavior of Three Lake-Rich Watersheds on the Arctic Coastal Plain, Alaska Winter Precipitation Maps - RCP 8.5, Inches Western Arctic Coastal Plain, Coastline and Coastal Features Pectoral Sandpiper Red-necked Phalarope Alaska Integrated Ecosystem Model Pilot Year Final Report Gyrfalcon Historical Stand Age 1870-1879 Historical Stand Age 1900-1909 Historical Stand Age 1910-1919 Arctic Tern Permafrost Database Development, Characterization, and Mapping for Northern Alaska Drainage Network Structure and Hydrologic Behavior of Three Lake-Rich Watersheds on the Arctic Coastal Plain, Alaska Western Arctic Coastal Plain, IfSAR DSM Mosaic Footprint Western Arctic Coastal Plain, Coastline and Coastal Features Pectoral Sandpiper Red-necked Phalarope Gyrfalcon Arctic Tern Permafrost Database Development, Characterization, and Mapping for Northern Alaska Report Report Alaska Integrated Ecosystem Model Pilot Year Final Report Historical Stand Age 1870-1879 Historical Stand Age 1900-1909 Historical Stand Age 1910-1919 Annual Precipitation Maps - RCP 8.5, Inches Winter Precipitation Maps - RCP 8.5, Inches