Skip to main content
Advanced Search

Filters: partyWithName: U.S. Geological Survey - ScienceBase (X) > partyWithName: Scott W Ator (X) > partyWithName: Water Resources (X)

9 results (9ms)   

Filters
Date Range
Types (Less)
Contacts (Less)
Categories (Less)
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
These data represent input and estimates from a medium-resolution (1:100,000 scale) NHDPlus SPAtially Referenced Regression on Watershed attributes (SPARROW) model for the Chesapeake Bay watershed (CBSS_v2). The model spatially correlates long-term mean annual suspended-sediment flux in 113 non-tidal streams to likely upland and stream-corridor sources, landscape factors affecting upland sediment transport and delivery to stream corridors, and fluvial and reservoir retention representing the early 2000 time period. The item COMID is a common related field between the data file and the spatial component (catchments) in NHDPlus version 1.0.
thumbnail
The U.S. Geological Survey’s (USGS) SPAtially Referenced Regression On Watershed attributes (SPARROW) model was used to aid in the interpretation of monitoring data and simulate nutrient loads in streams across the Midwest Region of the United States. SPARROW is a hybrid empirical/process-based mass balance model that can be used to estimate the major sources and environmental factors that affect the long-term supply, transport, and fate of contaminants in streams. The spatially explicit model structure is defined by a river reach network coupled with contributing catchments. The model is calibrated by statistically relating watershed sources and transport-related properties to monitoring-based water-quality load...
thumbnail
The CBTN_v5 and CBTP_v5 SPARROW models were developed to support inferences about causes of observed changes in nitrogen and phosphorus (respectively) fluxes in Chesapeake Bay tributaries between 1992 and 2012. Model inputs and outputs are included in three files, which are described below. Detailed documentation of the SPARROW modeling technique is available at https://pubs.er.usgs.gov/publication/tm6B3.
This data release contains mean-annual total nitrogen (TN) loads predicted by a SPARROW model for individual stream and shoreline reaches in the Chesapeake watershed as defined by NHDPlus, a 1:100,000 scale representation of stream hydrography built upon the National Hydrography Dataset (NHD) (Horizon Systems, 2010). Also included are the input variables required to execute the model, including landscape characteristics, nutrient inputs to land, and calibration data from water quality monitoring stations. Further details on model construction and results are described in Ator (2011, https://doi.org/10.3133/sir20115167).
thumbnail
Nitrogen and phosphorus losses from agricultural areas have impacted the water quality of downstream rivers, lakes, and oceans. As a result, investment in the adoption of agricultural best management practices (BMPs) has grown but assessments of their effectiveness at large spatial scales have been sparse. This study applies regional Spatially Referenced Regression On Watershed-attributes (SPARROW) models developed for the Midwest, Northeast, and Southeast regions of the United States to quantify regional effects of BMPs on nutrient losses from agricultural lands. These models were used because they account for specific BMPs in the prediction of instream nutrient loads. This data release accompanies the journal...
thumbnail
The U.S. Geological Survey's (USGS) SPAtially Referenced Regression On Watershed attributes (SPARROW) model was used to aid in the interpretation of monitoring data and simulate streamflow and water-quality conditions in streams across the Northeast Region of the United States. SPARROW is a hybrid empirical/process-based mass balance model that can be used to estimate the major sources and environmental factors that affect the long-term supply, transport, and fate of contaminants in streams. The spatially explicit model structure is defined by a river reach network coupled with contributing catchments. The model is calibrated by statistically relating watershed sources and transport-related properties to monitoring-based...
thumbnail
This dataset contains generalized lithologic classes (rocktypes) as reassigned from the USGS state geologic map compilation for the conterminous United States (Schweitzer, 2011). Lithology was classified into 12 generalized categories using the fields LITH62 and LITH62MINO available in Schweitzer (2011). Geospatial and tabular data associated with the generalized lithologic classes (rocktypes) are included in the data release. References: Schweitzer, Peter N., 2011, Combined geologic map data for the conterminous US derived from the USGS state geologic map compilation: U.S. Geological Survey, available at https://mrdata.usgs.gov/geology/state/geol_poly.zip.
thumbnail
The United States Geological Survey’s (USGS) SPAtially Referenced Regressions On Watershed attributes (SPARROW) model was developed to aid in the interpretation of monitoring data and simulate water-quality conditions in streams across large spatial scales. SPARROW is a hybrid empirical/process-based mass balance model that can be used to estimate the major sources and environmental factors that affect the long-term supply, transport, and fate of contaminants in streams. The spatially explicit model structure is defined by a river reach network coupled with contributing catchments. The model is calibrated by statistically relating watershed sources and transport-related properties to monitoring-based streamflow...
thumbnail
This data release includes 5 files containing model inputs and resulting model predictions. A previously-calibrated spatially referenced regression (SPARROW) model was used to estimate effects of climate change on in-stream nitrogen (TN) loads in the Chesapeake Bay watershed between 1995 and 2025. Model scenarios were run using data for nitrogen sources and landscape characteristics from 2012, changing only temperature and runoff using climate change predictions to evaluate the change in climate on TN loads. Confidence intervals for model output predictions are also included.


    map background search result map search result map Water-quality and streamflow datasets used for estimating long-term mean daily streamflow and annual loads to be considered for use in regional streamflow, nutrient and sediment SPARROW models, United States, 1999-2014 Generalized lithology for the conterminous United States Inputs and Selected Predictions of the CBTN_v5 and CBTP_v5 SPARROW Models for the Chesapeake Bay Watershed Input and predictions from a suspended-sediment SPARROW model CBSS_V2 in the Chesapeake Bay watershed SPARROW model inputs and simulated streamflow, nutrient and suspended-sediment loads in streams of the Northeastern United States, 2012 Base Year SPARROW cover crop model coefficients, summary statistics, inputs and simulated total phosphorus loads in streams of the Midwest United States, 2012 Base Year Nutrient Load Data used to Quantify Regional Effects of Agricultural Best Management Practices: An application of the 2012 SPARROW models for the Midwest, Northeast, and Southeast United States SPARROW model input datasets and predictions of nitrogen loads in streams of the Chesapeake Bay watershed SPARROW model input datasets and predictions for predicting near-term effects of climate change on nitrogen transport to Chesapeake Bay SPARROW model input datasets and predictions for predicting near-term effects of climate change on nitrogen transport to Chesapeake Bay Inputs and Selected Predictions of the CBTN_v5 and CBTP_v5 SPARROW Models for the Chesapeake Bay Watershed SPARROW model input datasets and predictions of nitrogen loads in streams of the Chesapeake Bay watershed Input and predictions from a suspended-sediment SPARROW model CBSS_V2 in the Chesapeake Bay watershed SPARROW model inputs and simulated streamflow, nutrient and suspended-sediment loads in streams of the Northeastern United States, 2012 Base Year SPARROW cover crop model coefficients, summary statistics, inputs and simulated total phosphorus loads in streams of the Midwest United States, 2012 Base Year Nutrient Load Data used to Quantify Regional Effects of Agricultural Best Management Practices: An application of the 2012 SPARROW models for the Midwest, Northeast, and Southeast United States Water-quality and streamflow datasets used for estimating long-term mean daily streamflow and annual loads to be considered for use in regional streamflow, nutrient and sediment SPARROW models, United States, 1999-2014 Generalized lithology for the conterminous United States