Skip to main content
Advanced Search

Filters: partyWithName: Paul C Hackley (X) > partyWithName: Geology, Energy & Minerals Science Center (X) > partyWithName: Justin E Birdwell (X) > Categories: Data (X)

4 results (8ms)   

View Results as: JSON ATOM CSV
Geological models for petroleum generation suggest thermal conversion of oil-prone sedimentary organic matter in the presence of water promotes increased liquid saturate yield, whereas absence of water causes formation of an aromatic, cross-linked solid bitumen residue. To test the influence of exchangeable hydrogen from water, organic-rich (22 wt.% total organic carbon, TOC) mudrock samples from the Eocene lacustrine Green River Mahogany zone oil shale were pyrolyzed under hydrous and anhydrous conditions at temperatures between 300 and 370°C for 72 hrs. Petrographic approaches including optical microscopy, reflectance, Raman spectroscopy, and scanning electron and transmission electron microscopy, supplemented...
The nanoscale molecular composition of kerogen is a challenging parameter to characterize given the chemical and structural complexity exhibited by this important biopolymer. However, kerogen composition will strongly impact its reactivity and so is a critical parameter to understand petroleum generation processes during kerogen catagenesis. The recent advent of tip-enhanced analytical methods, such as atomic force microscopy-based infrared spectroscopy (AFM-IR), has allowed for the major compositional features of kerogen to be elucidated at spatial resolutions at or below 50 nm. Here we apply AFM-IR to examine inertinite, an important kerogen maceral type, from an immature Eagle Ford Shale sample. Our data show...
thumbnail
Solid bitumen is a petrographically-defined secondary organic matter residue produced during petroleum generation and subsequent oil transformation. The presence of solid bitumen impacts many shale reservoir properties including porosity, permeability, and hydrocarbon generation and storage, amongst others. Furthermore, solid bitumen reflectance is an important parameter for assessing the thermal maturity of formations with little to no vitrinite. While the molecular composition of solid bitumen will strongly impact associated parameters such as the development of organic matter porosity, hydrocarbon generation, and optical reflectance, assessing the molecular composition of solid bitumen in situ within shale reservoirs...
thumbnail
The molecular composition of petroliferous organic matter and its composition evolution throughout thermal advance are key to understanding and insight into petroleum generation. This information is critical for comprehending hydrocarbon resources in unconventional reservoirs, as source rock organic matter is highly dispersed, in contact with the surrounding mineral matrix, and may be present as multiple organic matter types. Here, a combination of Raman spectroscopy and optical microscopy approaches was applied to a marginally mature (vitrinite reflectance ~0.5%) sample of the Late Cretaceous Boquillas Shale before and after hydrous pyrolysis (HP) at 300 °C and 330 °C for 72 hours. This experimental design allowed...


    map background search result map search result map Nanoscale Molecular Composition of Solid Bitumen from the Eagle Ford Group Across a Natural Thermal Maturity Gradient Atomic Force Microscopy-based Infrared Spectroscopy Data within Immature Eagle Ford Shale at the Nanometer-scale Reflectance, Raman band separation and Mean multivariant curve resolution (MCR) in organic matter in Boquillas Shale TOC, Reflectance and Raman Data from Eocene Green River Mahogany zone Nanoscale Molecular Composition of Solid Bitumen from the Eagle Ford Group Across a Natural Thermal Maturity Gradient Reflectance, Raman band separation and Mean multivariant curve resolution (MCR) in organic matter in Boquillas Shale TOC, Reflectance and Raman Data from Eocene Green River Mahogany zone Atomic Force Microscopy-based Infrared Spectroscopy Data within Immature Eagle Ford Shale at the Nanometer-scale