Skip to main content
Advanced Search

Filters: partyWithName: Pacific Coastal and Marine Science Center (X) > partyWithName: U.S. Geological Survey - ScienceBase (X)

621 results (51ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This metadata describes a digital elevation model (DEM) created from bathymetric and topographic data collected between 2017 and 2019 in the Sacramento River Deep Water Ship Channel (DWSC), northern Sacramento-San Joaquin Delta, California. We merged the newly collected bathymetric and topographic data presented in this data release (DOI:10.5066/P9AQSRVH) with 2019 surveys by the California Department of Water Resources (DWR) and 2017 USGS Sacramento Delta Lidar, to produce a seamless digital elevation model of the DWSC at a grid resolution of 1 m.
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
DATA ACCESS: see below under 'Related Resources' or 'Child Items' for links to specific Phase 2 Channel Islands data files. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal...
thumbnail
DATA ACCESS: see below under 'Related Resources' or 'Child Items' for links to specific Phase 2 Santa Barbara County data files. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
This portion of the USGS data release presents bathymetry data collected during surveys performed in the Columbia River littoral cell, Washington and Oregon in 2014 (USGS Field Activity Number 2014-631-FA). Bathymetry data were collected using four personal watercraft (PWCs) equipped with single-beam sonar systems and global navigation satellite system (GNSS) receivers. The sonar systems consisted of an Odom Echotrac CV-100 single-beam echosounder and 200 kHz transducer with a 9 degree beam angle. Raw acoustic backscatter returns were digitized by the echosounder with a vertical resolution of 1.25 cm. Depths from the echosounders were computed using sound velocity profiles measured using a YSI CastAway CTD during...
thumbnail
The lack of geographic and thematic maps of coral reefs limits our understanding of reefs and our ability to assess change. The U.S. Geological Survey (USGS) has the capability to compile digital image mosaics that are useful for creating detailed map products. Image maps covering the shallow near-shore coastal waters have been produced for several of the main Hawaiian Islands, including Hawai‘i, Maui, Moloka‘i, and O‘ahu and are presented in JPEG2000 (.jp2) format. The digital-image mosaics were generated by first scanning historical aerial photographs at 1.0 meter-per-pixel resolution. The individually scanned digital images were tone- and color-matched and then combined together using spatial matching. Separately,...
thumbnail
DATA ACCESS: See below under 'Attached Files' - click to download zip file package. Summary: The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.0 for Southern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Phase 2 data for Southern...
thumbnail
RBRduo pressure and temperature sensors, mounted on aluminum frames, were moored in shallow (< 6 m) water depths in Skagit and Bellingham Bays, Washington, USA, from December 2017 to February 2018, to capture wave heights and periods. Continuous pressure fluctuations are transformed into surface-wave observations of wave heights, periods, and frequency spectra at 30-minute intervals.
thumbnail
Chirp data were collected by the U.S. Geological Survey in September of 2013 in Port Valdez, Alaska. Data were collected aboard the USGS R/V Alaskan Gyre during field activity G-01-13-GA, using an EdgeTech SB-512i sub-bottom profiler. Sub-bottom acoustic penetration spans several tens of meters and is variable by location.
thumbnail
Multichannel minisparker and boomer seismic-reflection and chirp sub bottom data were collected by the U.S. Geological Survey in September of 2013 in Port Valdez, Alaska. Data were collected aboard the USGS R/V Alaskan Gyre during field activity G-01-13-GA. Sub-bottom acoustic penetration spans several hundreds of meters and is variable by location. High-resolution multichannel seismic-reflection data were acquired to support the U.S. Geological Survey Alaska coastal and marine hazards project to explore the sedimentary structure of tsunamigenic landslide deposits around an IODP drill site in Port Valdez. These data and information are intended for science researchers, students from elementary through college, policy...
thumbnail
Geochemical analyses of authigenic carbonates, bivalves, and pore fluids were performed on samples collected from seep fields along the Queen Charlotte Fault, a right lateral transform boundary that separates the Pacific and North American tectonic plates. Samples were collected using grab samplers and piston cores, and were collected during three different research cruises in 2011, 2015, and 2017.
thumbnail
Water depth, turbidity, and current velocity time-series data were collected in Liberty Island Conservation Bank (WVA) in 2017. The turbidity sensors were not calibrated to suspended-sediment concentration at this location. Typically, each zip folder for a deployment period contains two data files from a velocimeter and one data file from a CTD, each of which include data from an optical backscatter sensor. --------- Data were collected from several sites in Little Holland Tract (LHT) and Liberty Island (LI), including the Liberty Island Conservation Bank (LICB), from 2015 to 2017. Table 1 (below) lists the deployment name (DLXXX) and dates for each sampling station location. Station names starting with ‘H’ are...


map background search result map search result map Island of Hawai‘i CoSMoS 3.0 Phase 2 flood hazard projections: 100-year storm in San Diego County CoSMoS 3.0 Phase 2 flood depth and duration projections: 20-year storm in San Diego County CoSMoS 3.0 Phase 2 flood depth and duration projections: 1-year storm in San Diego County CoSMoS 3.0 Phase 2 wave-hazard projections: 1-year storm in San Diego County CoSMoS v3.0 Phase 2 - Santa Barbara County CoSMoS 3.0 Phase 2 ocean-currents hazards: 1-year storm in Santa Barbara County CoSMoS 3.0 Phase 2 ocean-currents hazards: 100-year storm in Santa Barbara County CoSMoS v3.0 Phase 2 - Channel Islands CoSMoS 3.0 Phase 2 ocean-currents hazards: 1-year storm in Ventura County CoSMoS 3.0 Phase 2 water level projections: 20-year storm in Orange County CoSMoS 3.0 Phase 2 water level projections: average conditions in Orange County CoSMoS 3.0 Phase 2 ocean-currents hazards: 20-year storm in Orange County Water-level, wind-wave, velocity, and suspended-sediment concentration (SSC) time-series data from Liberty Island Conservation Bank (station WVA), Sacramento-San Joaquin Delta, California, 2017 Geochemical analysis of seeps along the Queen Charlotte Fault Nearshore bathymetry of the Columbia River littoral cell, Washington and Oregon, 2014 Wave observations from nearshore bottom-mounted pressure sensors in Skagit and Bellingham Bays, Washington, USA from Dec 2017 to Feb 2018 Digital elevation model (DEM) of the Sacramento River Deep Water Ship Channel (DWSC), Sacramento-San Joaquin Delta, California Chirp, multichannel minisparker, and boomer seismic-reflection data from USGS field activity G-01-13-GA collected in Port Valdez, Alaska, in September 2013 Chirp seismic-reflection data from USGS field activity G-01-13-GA collected in Port Valdez, Alaska, in September 2013 Water-level, wind-wave, velocity, and suspended-sediment concentration (SSC) time-series data from Liberty Island Conservation Bank (station WVA), Sacramento-San Joaquin Delta, California, 2017 Digital elevation model (DEM) of the Sacramento River Deep Water Ship Channel (DWSC), Sacramento-San Joaquin Delta, California Island of Hawai‘i CoSMoS 3.0 Phase 2 ocean-currents hazards: 1-year storm in Ventura County Chirp, multichannel minisparker, and boomer seismic-reflection data from USGS field activity G-01-13-GA collected in Port Valdez, Alaska, in September 2013 Nearshore bathymetry of the Columbia River littoral cell, Washington and Oregon, 2014 Chirp seismic-reflection data from USGS field activity G-01-13-GA collected in Port Valdez, Alaska, in September 2013 Wave observations from nearshore bottom-mounted pressure sensors in Skagit and Bellingham Bays, Washington, USA from Dec 2017 to Feb 2018 CoSMoS v3.0 Phase 2 - Santa Barbara County CoSMoS 3.0 Phase 2 ocean-currents hazards: 1-year storm in Santa Barbara County CoSMoS 3.0 Phase 2 ocean-currents hazards: 100-year storm in Santa Barbara County CoSMoS 3.0 Phase 2 water level projections: 20-year storm in Orange County CoSMoS 3.0 Phase 2 water level projections: average conditions in Orange County CoSMoS 3.0 Phase 2 ocean-currents hazards: 20-year storm in Orange County CoSMoS 3.0 Phase 2 flood hazard projections: 100-year storm in San Diego County CoSMoS 3.0 Phase 2 flood depth and duration projections: 20-year storm in San Diego County CoSMoS 3.0 Phase 2 flood depth and duration projections: 1-year storm in San Diego County CoSMoS 3.0 Phase 2 wave-hazard projections: 1-year storm in San Diego County CoSMoS v3.0 Phase 2 - Channel Islands Geochemical analysis of seeps along the Queen Charlotte Fault