Skip to main content
Advanced Search

Filters: partyWithName: Woods Hole Coastal and Marine Science Center (X) > Extensions: ArcGIS Service Definition (X)

4 results (10ms)   

View Results as: JSON ATOM CSV
thumbnail
Monitoring shoreline change is of interest in many coastal areas because it enables quantification of land loss over time. Evolution of shoreline position is determined by the balance between erosion and accretion along the coast. In the case of salt marshes, erosion along the water boundary causes a loss of ecosystem services, such as habitat provision, carbon storage, and wave attenuation. In terms of vulnerability, higher shoreline erosion rates indicate higher vulnerability. This dataset displays shoreline change rates at the Edwin B. Forsythe National Wildlife Refuge (EBFNWR), which spans over Great Bay, Little Egg Harbor, and Barnegat Bay in New Jersey, USA. Shoreline change rates are based on...
thumbnail
This data release contains coastal wetland synthesis products for Chesapeake Bay. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing federal, state, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands. For this purpose, the response and resilience of coastal wetlands to physical factors...
thumbnail
The salt marsh complex of the Edwin B. Forsythe National Wildlife Refuge (EBFNWR), which spans over Great Bay, Little Egg Harbor, and Barnegat Bay (New Jersey, USA), was delineated to smaller, conceptual marsh units by geoprocessing of surface elevation data. Flow accumulation based on the relative elevation of each location is used to determine the ridge lines that separate each marsh unit while the surface slope is used to automatically assign each unit a drainage point, where water is expected to drain through. Through scientific efforts associated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has started to expand national assessment of coastal change hazards and forecast products to coastal...
thumbnail
Elevation distribution in the Edwin B. Forsythe National Wildlife Refuge (EBFNWR), which spans over Great Bay, Little Egg Harbor, and Barnegat Bay in New Jersey, USA is given in terms of mean elevation of conceptual marsh units defined by Defne and Ganju (2016). The elevation data is based on the 1-meter resampled 1/9 arc-second resolution USGS National Elevation Data. As part of the Hurricane Sandy Science Plan, the U.S. Geological Survey is expanding National Assessment of Coastal Change Hazards and forecast products to coastal wetlands. The intent is to provide federal, state, and local managers with tools to estimate their vulnerability and ecosystem service potential. For this purpose, the response and resilience...


    map background search result map search result map Conceptual salt marsh units for wetland synthesis: Edwin B. Forsythe National Wildlife Refuge, New Jersey Shoreline change rates in salt marsh units in Edwin B. Forsythe National Wildlife Refuge, New Jersey Elevation of salt marsh units in Edwin B. Forsythe National Wildlife Refuge, New Jersey Conceptual marsh units of Chesapeake Bay salt marshes Shoreline change rates in salt marsh units in Edwin B. Forsythe National Wildlife Refuge, New Jersey Conceptual salt marsh units for wetland synthesis: Edwin B. Forsythe National Wildlife Refuge, New Jersey Elevation of salt marsh units in Edwin B. Forsythe National Wildlife Refuge, New Jersey Conceptual marsh units of Chesapeake Bay salt marshes