Skip to main content
Advanced Search

Filters: partyWithName: Edward F Bugliosi (X)

8 results (7ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Description of Work Since 2010, connecting channels have been included in each of the Great Lakes’ Lake Management Plans (LaMPs). Lake Ontario now includes both the Niagara River and the St. Lawrence River. The Niagara River is well characterized by a number of long-term programs, but because of the lack of tributary water-quality data, the St. Lawrence River and its tributaries constitute a data gap in the information needed for the Lake Ontario to fulfill its goals. Critical information needs, including basic water-quality parameters, total suspended solids, nutrients and flow data. These data are needed to aid in the identification of sources of nutrient and sediment loading to the St. Lawrence. The monitoring...
thumbnail
Description of Work To date many meetings have been attended and coalitions developed between USGS Water Mission area and NYSDEC and EPA region 2 which have spun off into several other monitoring and BUI delisting projects funded by Region 2 through the USGS/EPA IA. This has been a perfect example of leveraging USGS GLRI funds to develop additional GLRI-related program for the Lake Ontario LaMP partners, especially for tributary nutrient and sediment loading to Lake Ontario and helping collect and assess the data needed to remove BUI impairments at the Rochester Embayment and St. Lawrence/Massena AOCs for benthos and phytoplankton impairments.
thumbnail
Description of Work The study will be implemented in two phases due to logistical constraints and the need to incorporate methods developed (and findings) from a comparable investigation underway in another AOC. The first phase will consist of site selection, methods refinement, work-plan development, subcontract assembly, site reconnaissance, and sediment collection which will be done mainly during FY2013. The second phase will consist of macroinvertebrate identification, sediment toxicity testing, data analysis and interpretation, and report preparation and review mainly during FY2014. In brief, we will generate bed sediment toxicity and benthic community data needed to test two related hypotheses that address...
thumbnail
Description of Work Predictive models have been used at beaches to improve the timeliness and accuracy of recreational water-quality assessments over the most common current approach to water-quality monitoring, which relies on culturing fecal-indicator bacteria such as Escherichia coli (E. coli.)
thumbnail
Description of Work This study will generate bed sediment toxicity and benthic community data needed to test two related hypotheses that address the two criteria for delisting the benthos BUI. The first hypothesis is that bed sediments at selected sample locations in the AOC (in three tributaries and in the St. Lawrence River) are no more toxic to the test species than bed sediments collected from control sites located outside (generally upstream from) the AOC. Acute (survival) and chronic (growth) whole bed-sediment toxicity tests will be conducted using the midge (Chironomus dilutus), following standard methods (USEPA 1994; USEPA 2000). The second hypothesis is that the benthic macroinvertebrate communities from...
thumbnail
Description of Work The Great Lakes ecosystem has undergone major changes over the last two decades related to the invasion of Dreissenid mussels, increased water clarity, increased benthic algae and associated water quality problems. For reasons not yet entirely understood, and that have bi-national significance, water column total phosphorus has not significantly increased over the last decade but the relative percent of the more biologically available dissolved phosphorus has increased. The filtering action of Dreissenid mussels has been shown to increase concentrations of dissolved phosphorus in the water column immediately above mussel beds and this had been hypothesized as one explanation for the increase...
thumbnail
Description of Work This project is designed to (1) collect more frequent total suspended sediment (TSS) and total phosphorous (TP) data for the Genesee River Watershed, especially sub-watersheds at the 12-digit HUC (Hydrologic Unit code) scale, both within and outside of the AOC; and (2) to conduct a pilot study capable of evaluating the reduction in sediments and nutrients from the current and proposed GLRI non-point source reduction projects in the watershed aggregated at the 12-digit HUC. This project is envisioned as a two-year pilot for the Genesee River Watershed, with potentially wider applications in the Lake Ontario Basin and other Great Lake areas.
thumbnail
Description of Work Past water-quality issues in the St. Lawrence River at Massena, NY resulted in a determination that selected beneficial uses may be impaired in a surrounding Area of Concern (AOC) and on the Canadian side of the international boundary (Cornwall, Ontario). The plankton (phytoplankton and zooplankton) Beneficial Use Impairment (BUI) was so designated because impairment metrics were unavailable or inconclusive. Recent investigations, however, suggest that plankton communities are relatively healthy and no longer threaten the local ecosystem. Thus, the BUI for plankton may now be outdated in all, or parts of, the St. Lawrence River in the Massena AOC. The primary goal for the Massena (and Cornwall)...


    map background search result map search result map Water Toxicity in the St. Lawrence River at Massena Area of Concern Benthic Communities and Sediment Toxicity in the  St Lawrence River AOC Benthic Communities and Sediment and Water Toxicity in the Rochester Embayment AOC Lakewide Management Plan Capacity Support by U.S. Geological Survey - LAKE ONTARIO Understanding Nutrient Loading Impacts on Lake Ontario Nearshore Waters at the Niagara River Connecting Channel Genesee River BUI / Genesee River Watershed: TSS and TP loading collection and Pilot Project to Evaluate Aggregate BMP Effectiveness Developing and Implementing Predictive Models for Estimating Recreational Water Quality at Great Lakes Beaches in new York State Water Toxicity in the St. Lawrence River at Massena Area of Concern Benthic Communities and Sediment Toxicity in the  St Lawrence River AOC Benthic Communities and Sediment and Water Toxicity in the Rochester Embayment AOC Lakewide Management Plan Capacity Support by U.S. Geological Survey - LAKE ONTARIO Understanding Nutrient Loading Impacts on Lake Ontario Nearshore Waters at the Niagara River Connecting Channel Genesee River BUI / Genesee River Watershed: TSS and TP loading collection and Pilot Project to Evaluate Aggregate BMP Effectiveness Developing and Implementing Predictive Models for Estimating Recreational Water Quality at Great Lakes Beaches in new York State