Skip to main content
Advanced Search

Filters: Extensions: Project (X) > partyWithName: California Landscape Conservation Cooperative (X) > partyWithName: California LCC Data Manager (X) > Extensions: Expando (X) > Extensions: Budget (X)

14 results (8ms)   

Filters
Date Range
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
This project designed a monitoring program and protocol to detect the effects of climate change on tidal marsh bird population abundance and distribution. It is a companion to “Tidal Marsh Bird Population and Habitat Assessment for San Francisco Bay under Future Climate Change Conditions” and will build on its products, enabling evaluation of the long-term viability of four tidal-marsh bird species threatened by impacts of climate change: Clapper Rail, Black Rail, Common Yellowthroat, and Song Sparrow (three endemic subspecies: San Pablo, Suisun, and Alameda). Information is available through the California Avian Data Center. See also: http://data.prbo.org/apps/sfbslr/index.php?page=lcc-page
This project integrates fire risk models, species distribution models (SDMs) and population models with scenarios of future climate and land cover to project how the effects of climate-induced changes to species distributions and land use change will impact threatened species in fire-prone ecosystems. This project also identifies and prioritizes potential management responses to climate change (e.g. assisted colonization, fire management, land protection, dispersal corridors). Anticipated products include: 1) maps (digital and hard copy) of habitat suitability under current and future climate change, current and future projected urban growth and combinations of climate change and future projected urban growth, under...
Categories: Data, Project; Tags: 2011, Academics & scientific researchers, CA, CA-Southern, California Landscape Conservation Cooperative, All tags...
This project used species distribution modeling, population genetics, and geospatial analysis of historical vs. modern vertebrate populations to identify climate change refugia and population connectivity across the Sierra Nevada. It is hypothesized that climate change refugia will increase persistence and stability of populations and, as a result, maintain higher genetic diversity. This work helps managers assess the need to include connectivity and refugia in climate change adaptation strategies. Results help Sierra Nevada land managers allocate limited resources, aid future scenario assessment at landscape scales, and develop a performance measure for assessing resilience.
Categories: Data, Project; Tags: 2011, 2013, CA, California Landscape Conservation Cooperative, Conservation Design, All tags...
The main goal of this project is to ensure that the 2011-13 climate change update to the Baylands Ecosystem Habitat Goals Report (Baylands Goals) and other key, ongoing conservation activities in the San Francisco Bay region use the latest information about the current and future status of San Francisco Bay tidal marsh ecosystems, particularly in the context of sea-level rise. The main product of the project is the improved Sea Level Rise (SLR) Tool, specifically upgraded to inform the Baylands Goals Report update. The tool will continue to be available online at www.prbo.org/sfbayslr. All data layers going into the tool are and will continue to be downloadable from the site.
The goal of this project is to create critically needed coastal fog datasets. Anticipated products from the collaboration between on-the-ground natural resource managers and a multidisciplinary coalition of physical scientists are: 1) a compilation of existing fog related data from multiple sources: satellite (AVHRR, GOES, Modis, Landsat), NOAA buoy , and airport and meteorological stations, 2) USGS Open File report documenting the results of a multiday working session with climatologists, remote sensing specialists, fog modelers, statisticians, and natural resource managers, convened to review the data, examine and assess the correlations between data streams and models, specify initial parameters to be extracted...
Categories: Data, Project; Tags: 2011, California Landscape Conservation Cooperative, California coast, Coastal, Coastal, All tags...
The CA Academy of Science and Point Blue Conservation Science conducted a systematic analysis of uncertainty in modeling the future distributions of ~50 California endemic plant species and ~50 California land birds, explicitly partitioning among 5 alternative sources of variation and testing for their respective contributions to overall variation among modeled outcomes. They mapped the uncertainty from identified sources, which can guide decisions about monitoring, restoration, acquisition, infrastructure, etc., in relation to climate change.
Most natural resource managers, planners and policy makers are now dependent upon spatially explicit environmental suitability and spatial allocation analyses to inform policy and management decisions. However, staff across agencies has been unable to stay current on understanding and applying these new data, tools and analyses. Currently, this information may be underutilized or used inappropriately, which could result in poor decisions. Two training curricula were developed – one for managers and one for GIS analysts – on current best practices for developing and using spatial information to support conservation decision making. The training materials are open-source and widely distributed to California LCC stakeholders.
California’s native fishes are mostly endemic, with no place to go as climate change increases water temperatures and alters stream flows. Many of the alien fishes, however, are likely to benefit from the effects of climate change. The goal of this project is to synthesize life history traits, population trends, status, and threats, including climate change, for all fishes in the state. We have found that 25% of the endemic fishes are now in danger of extinction. Climate change in conjunction with alien species, agriculture, and dams pose the greatest threat to native fishes. Preliminary results from two regional analyses suggest that native fishes in the Sierra Nevada are slightly less (74%) vulnerable to climate...
This project developed a foundation for monitoring environmental change by identifying where and what to monitor in order to evaluate climate-change impacts. Phase 1 focused on landbirds, however a framework will be developed that recommends standardized monitoring for other taxa and environmental attributes. Phase II Deliverables produced as part of this proposed work include a Business Plan that 1) refines site selection by developing a decision model in combination with analyses of sites (or clusters of sites) arrayed by climate space, 2) works with the LCC science committee, Joint Ventures, and other partners to choose a manageable number of core monitoring variables, 3) develops and/or adopting existing protocols...
The California Invasive Plant Council (Cal-IPC) developed a “risk mapping” approach that combines comprehensive distribution maps with maps of current and future suitable range to show where each (invasive) species is likely to spread. The distribution maps are based on a new dataset created through a major campaign to collect expert opinion data from local resource managers across the state. From this dataset, Cal-IPC recently completed risk maps and management recommendations for 43 invasive plant species in the Sierra Nevada. The proposed project will build an online tool for these data. The tool will allow natural resource managers to generate risk maps and summary statistics for areas they select, and to determine...
Categories: Data, Project; Tags: 2010, 2012, 2013, Applications and Tools, CA, All tags...
This project brought together natural resource managers, conservation coordinators and planners, and scientists working at multiple scales within the San Francisco Bay to develop a spatially-explicit decision framework that cuts across jurisdictional boundaries while accounting for uncertainties about climate change. In particular, the SDM framework allows managers within the Bay to identify a recommended strategy among a set of alternative strategies that may vary among its subregions (e.g. North Bay, South Bay, East Bay). Management priorities will be those that yield the greatest expected conservation benefits across the Bay considering multiple objectives including endangered species recovery (e.g. California...
To be successful, natural resource managers need to synthesize diverse information on the effects of management actions, climate change and other stressors on wildlife populations at appropriate scales. The project team developed a Decision Support Tool (DST) that integrates the results of multi-disciplinary, multi-taxa modeling allowing users to project outcomes of conservation actions, accounting for effects of climate change and other stressors. This DST builds on work to improve a sea level rise tool for adaptive tidal wetland restoration and management. The DST provides information on how restoration can increase population resilience and long-term persistence at multiple scales for multiple species throughout...