Skip to main content
Advanced Search

Filters: Types: Journal Citation (X) > Categories: Publication (X) > Types: Citation (X) > partyWithName: Campbell, Donald H (X)

10 results (11ms)   

View Results as: JSON ATOM CSV
Seasonal snowpack chemistry data from the Rocky Mountain region of the US was examined to identify long-term trends in concentration and chemical deposition in snow and in snow-water equivalent. For the period 1993?2004, comparisons of trends were made between 54 Rocky Mountain Snowpack sites and 16 National Atmospheric Deposition Program wetfall sites located nearby in the region. The region was divided into three subregions: Northern, Central, and Southern. A non-parametric correlation method known as the Regional Kendall Test was used. This technique collectively computed the slope, direction, and probability of trend for several sites at once in each of the Northern, Central, and Southern Rockies subregions....
High-elevation lakes in the western United States are sensitive to atmospheric deposition of sulfur and nitrogen due to fast hydrologic flushing rates, short growing seasons, an abundance of exposed bedrock, and a lack of well-developed soils. This sensitivity is reflected in the dilute chemistry of the lakes, which was documented in the U.S. Environmental Protection Agency's Western Lake Survey of 1985. Sixty-nine lakes in seven national parks sampled during the 1985 survey were resampled during fall 1999 to investigate possible decadal-scale changes in lake chemistry. In most lakes, SO4 concentrations were slightly lower in 1999 than in 1985, consistent with a regional decrease in precipitation SO4 concentrations...
Seasonal snowpack chemistry data from the Rocky Mountain region of the US was examined to identify long-term trends in concentration and chemical deposition in snow and in snow-water equivalent. For the period 1993?2004, comparisons of trends were made between 54 Rocky Mountain Snowpack sites and 16 National Atmospheric Deposition Program wetfall sites located nearby in the region. The region was divided into three subregions: Northern, Central, and Southern. A non-parametric correlation method known as the Regional Kendall Test was used. This technique collectively computed the slope, direction, and probability of trend for several sites at once in each of the Northern, Central, and Southern Rockies subregions....
thumbnail
Ground water occurrence, movement, and its contribution to streamflow were investigated in Loch Vale, an alpine catchment in the Front Range of the Colorado Rocky Mountains. Hydrogeomorphologic mapping, seismic refraction measurements, and porosity and permeability estimates indicate that talus slopes are the primary ground water reservoir, with a maximum storage capacity that is equal to, or greater than, total annual discharge from the basin (5.4 � 0.8 � 106 m3). Although snowmelt and glacial melt provide the majority of annual water flux to the basin, tracer tests and gauging along a stream transect indicate that ground water flowing from talus can account for ?75% of streamflow during storms and the winter base...
Categories: Publication; Types: Citation, Journal Citation; Tags: Ground Water
Although acidifying deposition in western North America is lower than in many parts of the world, many high-elevation ecosystems there are extremely sensitive to acidification. Previous studies determined that the Mount Zirkel Wilderness Area (MZWA) has the most acidic snowpack and aquatic ecosystems that are among the most sensitive in the region. In this study, spatial and temporal variability of ponds and lakes in and near the MZWA were examined to determine their sensitivity to acidification and the effects of acidic deposition during and after snowmelt. Within the areas identified as sensitive to acidification based on bedrock types, there was substantial variability in acid-neutralizing capacity (ANC), which...
Depth-integrated snowpack chemistry was measured just prior to maximum snowpack depth during the winters of 1992?1999 at 12 sites co-located with National Atmospheric Deposition Program/National Trend Network (NADP/NTN) sites in the central and southern Rocky Mountains, USA. Winter volume-weighted mean wet-deposition concentrations were calculated for the NADP/NTN sites, and the data were compared to snowpack concentrations using the paired t-test and the Wilcoxon signed-rank test. No statistically significant differences were indicated in concentrations of SO42? or NO3? (p>0.1). Small, but statistically significant differences (p0.03) were indicated for all other solutes analyzed. Differences were largest for Ca2+...
The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acid-neutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model...
High-altitude watersheds in the Front Range of Colorado show symptoms of advanced stages of nitrogen excess, despite having less nitrogen in atmospheric deposition than other regions where watersheds retain nitrogen. In two alpine/subalpine subbasins of the Loch Vale watershed, atmospheric deposition of NO3? plus NH4+ was 3.2?5.5 kg N ha?1, and watershed export was 1.8?3.9 kg N ha?1 for water years 1992?1997. Annual N export increased in years with greater input of N, but most of the additional N was retained in the watershed, indicating that parts of the ecosystem are nitrogen-limited. Dissolved inorganic nitrogen (DIN) concentrations were greatest in subsurface water of talus landscapes, where mineralization and...
Variability in atmospheric deposition across the Rocky Mountains is influenced by elevation, slope, aspect, and precipitation amount and by regional and local sources of air pollution. To improve estimates of deposition in mountainous regions, maps of average annual atmospheric deposition loadings of nitrate, sulfate, and acidity were developed for the Rocky Mountains by using spatial statistics. A parameter-elevation regressions on independent slopes model (PRISM) was incorporated to account for variations in precipitation amount over mountainous regions. Chemical data were obtained from the National Atmospheric Deposition Program/National Trends Network and from annual snowpack surveys conducted by the US Geological...
During 1993?97, samples of the full depth of the Rocky Mountain snowpack were collected at 52 sites from northern New Mexico to Montana and analyzed for major-ion concentrations. Concentrations of acidity, sulfate, nitrate, and calcium increased from north to south along the mountain range. In the northern part of the study area, acidity was most correlated (negatively) with calcium. Acidity was strongly correlated (positively) with nitrate and sulfate in the southern part and for the entire network. Acidity in the south exceeded the maximum acidity measured in snowpack of the Sierra Nevada and Cascade Mountains. Principal component analysis indicates three solute associations we characterize as: (1) acid (acidity,...


    map background search result map search result map Ground Water Occurrence and Contributions to Streamflow in an Alpine Catchment, Colorado Front Range Ground Water Occurrence and Contributions to Streamflow in an Alpine Catchment, Colorado Front Range