Skip to main content
Advanced Search

Filters: Types: Citation (X) > partyWithName: Seth M Munson (X)

7 results (127ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
MOAB, Utah — Drier conditions projected to result from climate change in the Southwest will likely reduce perennial vegetation cover and result in increased dust storm activity in the future, according to a new study by scientists with the U.S. Geological Survey and the University of California, Los Angeles. The research team examined climate, vegetation and soil measurements collected over a 20-year period in Arches and Canyonlands National Parks in southeastern Utah. Long-term data indicated that perennial vegetation in grasslands and some shrublands declined with temperature increases. The study then used these soil and vegetation measurements in a model to project future wind erosion. The findings strongly...
One of the major concerns about global warming is the potential for an increase in decomposition and soil respiration rates, increasing CO2 emissions and creating a positive feedback between global warming and soil respiration. This is particularly important in ecosystems with large belowground biomass, such as grasslands where over 90% of the carbon is allocated belowground. A better understanding of the relative influence of climate and litter quality on litter decomposition is needed to predict these changes accurately in grasslands. The Long-Term Intersite Decomposition Experiment Team (LIDET) dataset was used to evaluate the influence of climatic variables (temperature, precipitation, actual evapotranspiration,...
thumbnail
This dataset includes the cover of perennial grasses in 1989, 1995, 1999, 2005, and 2009 across southern Arizona. Cover was determined using sub-pixel classifications of two Landsat scenes from path 36, row 38 (centered on latitude: 31.7470, longitude: -111.3981) and path 37, row 38 (31.7470, -112.9431) that encompass Tucson, AZ.
thumbnail
Woody plant encroachment and overall declines in perennial vegetation in dryland regions can alter ecosystem properties and indicate land degradation, but the causes of these shifts remain controversial. Determining how changes in the abundance and distribution of grass and woody plants are influenced by conditions that regulate water availability at a regional scale provides a baseline to which compare how management actions alter the composition of these vegetation types at a more local scale and can be used to predict future shifts under climate change. Using a remote sensing-based approach, we assessed the balance between grasses and woody plants and how climate and topo-edaphic conditions affected their abundances...
thumbnail
​Abstract: Climate change predictions include warming and drying trends, which are expected to be particularly pronounced in the southwestern United States. In this region, grassland dynamics are tightly linked to available moisture, yet it has proven difficult to resolve what aspects of climate drive vegetation change. In part, this is because it is unclear how heterogeneity in soils affects plant responses to climate. Here, we combine climate and soil properties with a mechanistic soil water model to explain temporal fluctuations in perennial grass cover, quantify where and the degree to which incorporating soil water dynamics enhances our ability to understand temporal patterns, and explore the potential consequences...
Categories: Data, Publication; Types: Citation, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, AZ-02, AZ-03, AZ-04, Academics & scientific researchers, All tags...
thumbnail
This dataset includes the cover of leguminous trees (Prosopis velutina, Parkinsonia microphylla, Parkinsonia florida) in 1989, 1995, 1999, 2005, and 2009 across southern Arizona. Cover was determined using sub-pixel classifications of two Landsat scenes from path 36, row 38 (centered on latitude: 31.7470, longitude: -111.3981) and path 37, row 38 (31.7470, -112.9431) that encompass Tucson, AZ.
thumbnail
This dataset includes the cover of creosote bush (Larrea tridentata)in 1989, 1995, 1999, 2005, and 2009 across southern Arizona. Cover was determined using sub-pixel classifications of two Landsat scenes from path 36, row 38 (centered on latitude: 31.7470, longitude: -111.3981) and path 37, row 38 (31.7470, -112.9431) that encompass Tucson, AZ.


    map background search result map search result map Data for Decadal shifts in grass and woody plant cover are driven by prolonged drying and modified by topo-edaphic properties Shifts in Perennial grass in southern Arizona, 1989 - 2009 Shifts in Creosote bush in southern Arizona, 1989 - 2009 Shifts in Leguminous tree in southern Arizona, 1989 - 2009 Publication and Report: Ecosystem Water Balance in a Desert Grassland Data for Decadal shifts in grass and woody plant cover are driven by prolonged drying and modified by topo-edaphic properties Shifts in Perennial grass in southern Arizona, 1989 - 2009 Shifts in Creosote bush in southern Arizona, 1989 - 2009 Shifts in Leguminous tree in southern Arizona, 1989 - 2009 Publication and Report: Ecosystem Water Balance in a Desert Grassland