Skip to main content
Advanced Search

Filters: Tags: maxent (X)

252 results (42ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
These data are statistical model outputs for Mojave monkeyflower (Mimulus mohavensis) species distribution, completed by Frank Davis’ Biogeography Lab at UC Santa Barbara. The UCSB Biogeography Lab used Maxent to generate predictions of habitat occupancy for ~70 species for the CA Energy Commission’s project “Cumulative Biological Impacts Framework for Solar Energy in the CA Desert”, 500-10-021. Species distribution models were produced at 270 m resolution using a subset of 22 environmental variables. Models were evaluated with 10-foldcross validated AUC scores. Results are preliminary and have notyet been reviewed by expert biologists. Both continuous probability surfaces and binary layers are available...
thumbnail
These data are statistical model outputs for Nevada onion (Allium nevadense) species distribution, completed by Frank Davis’ Biogeography Lab at UC Santa Barbara. The UCSB Biogeography Lab used Maxent to generate predictions of habitat occupancy for ~70 species for the CA Energy Commission’s project “Cumulative Biological Impacts Framework for Solar Energy in the CA Desert”, 500-10-021. Species distribution models were produced at 270 m resolution using a subset of 22 environmental variables. Models were evaluated with 10-foldcross validated AUC scores. Results are preliminary and have notyet been reviewed by expert biologists. Both continuous probability surfaces and binary layers are available for each...
thumbnail
These data are statistical model outputs for small-flowered bird's-beak (Cordylanthus parviflorus) species distribution, completed by Frank Davis’ Biogeography Lab at UC Santa Barbara. The UCSB Biogeography Lab used Maxent to generate predictions of habitat occupancy for ~70 species for the CA Energy Commission’s project “Cumulative Biological Impacts Framework for Solar Energy in the CA Desert”, 500-10-021. Species distribution models were produced at 270 m resolution using a subset of 22 environmental variables. Models were evaluated with 10-foldcross validated AUC scores. Results are preliminary and have notyet been reviewed by expert biologists. Both continuous probability surfaces and binary layers...
thumbnail
These data are statistical model outputs for Alkali mariposa-lily (Calochortus striatus ) species distribution, completed by Frank Davis’ Biogeography Lab at UC Santa Barbara. Predictions of habitat occupancy for ~70 species were generated from Maxent models for the CA Energy Commission’s project “Cumulative Biological Impacts Framework for Solar Energy in the CA Desert”, 500-10-021. Species distribution models were produced at 270 m resolution using a subset of 22 environmental variables. Models were evaluated with 10-fold cross validated AUC scores. Binary layers depicting predicted suitable habitat were derived using the equal training sensitivity and specificity threshold. For Calochortus striatus,...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
Average surface roughness. Surface roughness was calculated at a 30-m cell size using the method specified by Hobson (1972). Average surface roughness was then calculated as the average value of surface roughness in each 1-km2 grid cell. Derived from 30m NED DEM.
thumbnail
These data were generated with MAXENT 3.3.3k freeware (Phillips et al. 2011) using climate data and fire probability data for for three time periods: reference (1900-1929), mid-century (2040-2069) and late century (2070-2099), and community occurrence point data extracted from LANDFIRE Environmental Site Potential (ESP). Future time period data are from three global climate models (GCMs): CGCM, GFDL, and HadCM3. In MAXENT, we used the logistic output format (generating presence probabilities between 0 and 1), a random test percentage of 30 (using 70 % of the occurrence points to generate the suitability model and 30 % of the occurrence points to validate it), and a jackknife test to measure variable importance....


map background search result map search result map Mojave monkeyflower - UCSB Species Distribution Model, CA Desert Nevada onion - UCSB Species Distribution Model, CA Desert Small-flowered bird's-beak - UCSB Species Distribution Model, CA Desert Alkali mariposa lily - Species Distribution Model, DRECP Average surface roughness used in modeling habitat of the desert tortoise (Gopherus agassizii) in the Mojave and parts of the Sonoran Deserts of California, Nevada, Utah, and Arizona, USA Hot, Wet scenario forecast of climate suitability for purple mountainheath (Phyllodoce breweri) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections Warm, dry scenario forecast of climate suitability for joshua tree (Yucca brevifolia) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2  projections Ensemble forecast of climate suitability for scrub oak (Quercus berberidifolia) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon multiple (n=11) downscaled 2045-2065 A2 GCM projections Hot, wet scenario forecast of climate suitability for Douglas-fir (Pseudotsuga menziesii) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections Hot, dry scenario forecast of climate suitability for California sycamore (Platanus racemosa) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2 projections Warm, dry scenario forecast of climate suitability for foothill pine (Pinus sabiniana) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2  projections Hot, dry scenario forecast of climate suitability for ponderosa pine (Pinus ponderosa) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections Hot, dry scenario forecast of climate suitability for purple mountainheath (Phyllodoce breweri) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections Hot, dry scenario forecast of climate suitability for chaparral whitethorn (Ceanothus leucodermis) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections Warm, dry scenario forecast of climate suitability for chaparral whitethorn (Ceanothus leucodermis) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2  projections Ensemble forecast of climate suitability for mountain mahogany (Cercocarpus betuloides) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon multiple (n=11) downscaled 2045-2065 A2 GCM projections Ensemble forecast of climate suitability for California buckeye (Aesculus californica) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon multiple (n=11) downscaled 2045-2065 A2 GCM projections Ensemble forecast of climate suitability for white fir (Abies concolor) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon multiple (n=11) downscaled 2045-2065 A2 GCM projections Hot, dry scenario forecast of climate suitability for white fir (Abies concolor) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2 projections Reference period and projected environmental suitability scores Hot, Wet scenario forecast of climate suitability for purple mountainheath (Phyllodoce breweri) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections Warm, dry scenario forecast of climate suitability for joshua tree (Yucca brevifolia) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2  projections Ensemble forecast of climate suitability for scrub oak (Quercus berberidifolia) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon multiple (n=11) downscaled 2045-2065 A2 GCM projections Hot, wet scenario forecast of climate suitability for Douglas-fir (Pseudotsuga menziesii) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections Hot, dry scenario forecast of climate suitability for California sycamore (Platanus racemosa) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2 projections Warm, dry scenario forecast of climate suitability for foothill pine (Pinus sabiniana) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2  projections Hot, dry scenario forecast of climate suitability for ponderosa pine (Pinus ponderosa) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections Hot, dry scenario forecast of climate suitability for purple mountainheath (Phyllodoce breweri) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections Hot, dry scenario forecast of climate suitability for chaparral whitethorn (Ceanothus leucodermis) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections Warm, dry scenario forecast of climate suitability for chaparral whitethorn (Ceanothus leucodermis) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2  projections Ensemble forecast of climate suitability for mountain mahogany (Cercocarpus betuloides) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon multiple (n=11) downscaled 2045-2065 A2 GCM projections Ensemble forecast of climate suitability for California buckeye (Aesculus californica) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon multiple (n=11) downscaled 2045-2065 A2 GCM projections Ensemble forecast of climate suitability for white fir (Abies concolor) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon multiple (n=11) downscaled 2045-2065 A2 GCM projections Hot, dry scenario forecast of climate suitability for white fir (Abies concolor) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2 projections Average surface roughness used in modeling habitat of the desert tortoise (Gopherus agassizii) in the Mojave and parts of the Sonoran Deserts of California, Nevada, Utah, and Arizona, USA Mojave monkeyflower - UCSB Species Distribution Model, CA Desert Nevada onion - UCSB Species Distribution Model, CA Desert Small-flowered bird's-beak - UCSB Species Distribution Model, CA Desert Alkali mariposa lily - Species Distribution Model, DRECP Reference period and projected environmental suitability scores