Skip to main content
Advanced Search

Filters: Tags: biota (X) > partyWithName: Ecosystems (X) > partyWithName: Fort Collins Science Center (X) > Types: Map Service (X) > Types: OGC WFS Layer (X)

29 results (103ms)   

View Results as: JSON ATOM CSV
thumbnail
This data set defines boundaries of oil and gas project areas, greater sage-grouse (Centrocercus urophasianus) core areas, and non-core and non-project areas within the Wyoming Landscape Conservation Initiative (WLCI; southwestern Wyoming). Specifically , the data represents results from the manuscript “Combined influences of future oil and gas development and climate on potential Sage-grouse declines and redistribution” for medium oil and gas development, high population size, and no climate component. The oil and gas development scenario were based on an energy footprint model that simulates well, pad, and road patterns for oil and gas recovery options that vary in well types (vertical and directional) and number...
We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different population growth rates among smaller clusters. Equally so, the spatial structure and ecological...
thumbnail
Active channel as defined by remote sensing after (2011) a 40 year return period flood (December 2010) within the lower Virgin River, Nevada.
thumbnail
nv_lvl3_moderatescale: Nevada hierarchical cluster level 3 (moderate-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in...
thumbnail
nv_lvl5_coarsescale: Nevada hierarchical cluster level 5 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
wy_lvl10_coarsescale: Wyoming hierarchical cluster level 10 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in...
thumbnail
We analyzed detection/non-detection data from acoustic surveys of bat species in Colorado during the summers of 2016 and 2017. The goal of this analysis is to create species distribution maps estimating the probability of occupancy across the state for each species. We fit a community occupancy model using both years of data from all the available species. Spatially explicit covariates were included to explain heterogeneity in the probabilities of occupancy and nightly covariates were used to model detection. We also allowed for spatial patterns in the probability of occupancy for each species in order to account for the ranges of many species including only a portion of Colorado. This is also useful for explaining...
thumbnail
nv_lvl4_moderatescale: Nevada hierarchical cluster level 4 (moderate-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in...
thumbnail
wy_lvl3_moderatescale: Wyoming hierarchical cluster level 3 (moderate-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result...


map background search result map search result map Greater sage-grouse population change (percent change) in a moderate oil and gas development, high population estimate scenario, and with no effects of climate change (2006-2062) Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 1 (Nevada), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 3 (Nevada), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 4 (Nevada), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 5 (Nevada), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 10 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 3 (Wyoming), Interim Active channel in the Lower Virgin River after a 40 yr flood (December 2010) Bat Occupancy Model Predictions for Colorado, acoustic data from 2016-2017 Active channel in the Lower Virgin River after a 40 yr flood (December 2010) Greater sage-grouse population change (percent change) in a moderate oil and gas development, high population estimate scenario, and with no effects of climate change (2006-2062) Bat Occupancy Model Predictions for Colorado, acoustic data from 2016-2017 Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 10 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 3 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 1 (Nevada), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 3 (Nevada), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 4 (Nevada), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 5 (Nevada), Interim