Skip to main content
Advanced Search

Filters: Tags: biota (X) > partyWithName: Ecosystems (X) > Extensions: Shapefile (X)

57 results (12ms)   

View Results as: JSON ATOM CSV
thumbnail
wy_lvl7_coarsescale: Wyoming hierarchical cluster level 7 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
This study uses growth in vegetation during the monsoon season measured from LANDSAT imagery as a proxy for measured rainfall. NDVI values from 26 years of pre- and post-monsoon season Landsat imagery were derived across Yuma Proving Ground (YPG) in southwestern Arizona, USA. The LANDSAT imagery (1986-2011) was downloaded from USGS’s GlobeVis website (http://glovis.usgs.gov/). Change in NDVI was calculated within a set of 2,843 Riparian Area Polygons (RAPs) up to 1 km in length defined in ESRI ArcMap 10.2.
thumbnail
wy_lvl2_finescale: Wyoming hierarchical cluster level 2 (fine-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
Active channel as defined by remote sensing before (2010 and after (2011) a 40 year return period flood (December 2010) within the lower Virgin River, Nevada.
thumbnail
Data on 17 metrics of shale gas development in the Pennsylvania portion of the Upper Susquehanna River basin that was collated from a variety of sources and summarized at the upstream catchment scale. Data were also standardized by upstream area and transformed into rank scores based on metric distribution and then summarized into a Disturbance Intensity Index (DII). See Maloney et al. 2018 for detailed descriptions of each data sets and limitations of data. (Maloney, K. O., J. A. Young, S. P. Faulkner, A. Hailegiorgis, E. T. Slonecker, and L. E. Milheim. 2018. A detailed risk assessment of shale gas development on headwater streams in the Pennsylvania portion of the Upper Susquehanna River Basin, U.S.A. Science...
thumbnail
These bat location estimates have been reported by Bogan and others (In press) and come in the form of a GIS shape file. Three species of nectar-feeding phyllostomid bats migrate north from Mexico into deserts of the United States (U.S.) each spring and summer to feed on blooms of columnar cacti and century plants (Agave spp). However, the habitat needs of these important desert pollinators are poorly understood. We followed the nighttime movements of two species of long-nosed bats (Leptonycteris yerbabuenae and L. nivalis) in an area of late-summer sympatry at the northern edges of their migratory ranges. We radiotracked bats in extreme southwestern New Mexico during 22 nights over two summers and acquired location...
thumbnail
nv_lvl6_coarsescale: Nevada hierarchical cluster level 6 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
wy_lvl8_coarsescale: Wyoming hierarchical cluster level 8 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
This data set defines boundaries of oil and gas project areas, greater sage-grouse (Centrocercus urophasianus) core areas, and non-core and non-project areas within the Wyoming Landscape Conservation Initiative (WLCI; southwestern Wyoming). Specifically, the data represents results from the manuscript “Combined influences of future oil and gas development and climate on potential Sage-grouse declines and redistribution” for high oil and gas development, low population size, and no climate component. The oil and gas development scenario were based on an energy footprint model that simulates well, pad, and road patterns for oil and gas recovery options that vary in well types (vertical and directional) and number...
thumbnail
The GIS shapefile Extra limit counts of southern sea otters 2019 is a point layer representing the locations of sea otter sightings that fall outside the officially recognized range of the southern sea otter (Enhydra lutris nereis) in mainland California. These data were collected during the spring 2019 range-wide census. The USGS range-wide sea otter census has been undertaken each year since 1982, using consistent methodology involving both ground-based and aerial-based counts. The spring census provides the primary basis for gauging population trends by State and Federal management agencies. Sea otter distribution in California (the mainland range) is considered to comprise a band of potential habitat stretching...
thumbnail
wy_lvl5_coarsescale: Wyoming hierarchical cluster level 5 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
wy_lvl4_moderatescale: Wyoming hierarchical cluster level 4 (moderate-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result...
thumbnail
wy_lvl1_finescale: Wyoming hierarchical cluster level 1 (fine-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
This data set defines boundaries of oil and gas project areas, greater sage-grouse (Centrocercus urophasianus) core areas, and non-core and non-project areas within the Wyoming Landscape Conservation Initiative (WLCI; southwestern Wyoming). Specifically, the data represents results from the manuscript “Combined influences of future oil and gas development and climate on potential Sage-grouse declines and redistribution” for low oil and gas development, low population size, and with effects of climate change under an RCP 8.5 scenario (2050). The oil and gas development scenario were based on an energy footprint model that simulates well, pad, and road patterns for oil and gas recovery options that vary in well types...
thumbnail
This dataset contains data pertaining to ground surface cover in a 30 meter radius around a random selection of points within San Diego County, California. These data were obtained from aerial imagery for the years 1953 and 2016 and were used to assess changes in cover type over time. These data support the following publication: Syphard, A.D., Brennan, T.J. and Keeley, J.E., 2019. Extent and drivers of vegetation type conversion in Southern California chaparral. Ecosphere, 10(7), p.e02796.
thumbnail
This shapefile represents habitat suitability categories (High, Moderate, Low, and Non-Habitat) derived from a composite, continuous surface of sage-grouse habitat suitability index (HSI) values for northeastern California during the winter season (November to March), and is a surrogate for habitat conditions during periods of cold and snow.
thumbnail
This feature estimates the geographic extent of the sagebrush biome in the United States. It was created for the Western Association of Fish and Wildlife Agency’s (WAFWA) Sagebrush Conservation Strategy publication as a visual for the schematic figures. This layer does not represent the realized distribution of sagebrush and should not be used to summarize statistics about the distribution or precise location of sagebrush across the landscape. This layer is intended to generalize the sagebrush biome distribution using Landsat derived classified vegetation rasters (Rigge at al. 2019), Bureau of Land Management-designated Habitat Management Areas, state-designated Priority Areas for Conservation for sage-grouse, the...
thumbnail
The data provide location and data quality information for ground control points (GCP) deployed at Palmyra Atoll for acquisition of imagery using small unoccupied aerial systems (sUAS) in October 2016. Thales ProMark 3 handheld geographic positioning systems (GPS) were used as both a local base station and to record locations of individual GCPs, with occupancy times of approximately 30 minutes per GCP. Location data for GCPs were post-processed against base station data using Mobile Mapper Office software to yield local position accuracy of approximately 0.1 m.
thumbnail
The GIS shapefile Census_sum_2019 provides a standardized tool for examining spatial patterns in abundance and demographic trends of the southern sea otter (Enhydra lutris nereis), based on data collected during the spring 2019 range-wide census. The USGS spring range-wide sea otter census has been undertaken each year since 1982, using consistent methodology involving both ground-based and aerial-based counts. The spring census provides the primary basis for gauging population trends by State and Federal management agencies. This shapefile includes a series of summary statistics derived from the raw census data, including sea otter density (otters per square kilometer of habitat), linear density (otters per kilometer...
thumbnail
The GIS shapefile "Census summary of southern sea otter 2018" provides a standardized tool for examining spatial patterns in abundance and demographic trends of the southern sea otter (Enhydra lutris nereis), based on data collected during the spring 2018 range-wide census. The USGS spring range-wide sea otter census has been undertaken each year since 1982, using consistent methodology involving both ground-based and aerial-based counts. The spring census provides the primary basis for gauging population trends by State and Federal management agencies. This Shape file includes a series of summary statistics derived from the raw census data, including sea otter density (otters per square km of habitat), linear density...


map background search result map search result map Mean of the Top Ten Percent of NDVI Values in the Yuma Proving Ground during Monsoon Season, 1986-2011 Shale gas data used in development of the Disturbance Intensity Index for the Pennsylvania portion of the Upper Susquehanna River basin in Maloney et al. 2018 Radio telemetry data on nighttime movements of two species of migratory nectar-feeding bats (Leptonycteris) in Hidalgo County, New Mexico, late-summer 2004 and 2005 Annual California Sea Otter Census: 2018 Census Summary Shapefile Greater sage-grouse population change (percent change) in a high oil and gas development, low population estimate scenario, and with no effects of climate change (2006-2062) Greater sage-grouse population change (percent change) over 50-years in a low oil and gas development, low population estimate scenario, and with effects of climate change under an RCP 8.5 scenario (2050) Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 6 (Nevada), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 1 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 2 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 4 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 5 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 7 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 8 (Wyoming), Interim Winter Season Habitat Categories Shapefile The Sagebrush Biome Range Extent, as Derived from Classified Landsat Imagery Vegetation type conversion in chaparral in San Diego County, California, USA between 1953 and 2016 Active channel in the Lower Virgin River before and after a 40 yr flood (December 2010) Annual California Sea Otter Census: 2019 Census Summary Shapefile Annual California Sea Otter Census: 2019 Extra Limit Observations Shapefile Orthoimagery and elevation data derived from UAS imagery for Palmyra Atoll, USA 2016-GCPs 2016 Orthoimagery and elevation data derived from UAS imagery for Palmyra Atoll, USA 2016-GCPs 2016 Active channel in the Lower Virgin River before and after a 40 yr flood (December 2010) Mean of the Top Ten Percent of NDVI Values in the Yuma Proving Ground during Monsoon Season, 1986-2011 Vegetation type conversion in chaparral in San Diego County, California, USA between 1953 and 2016 Winter Season Habitat Categories Shapefile Radio telemetry data on nighttime movements of two species of migratory nectar-feeding bats (Leptonycteris) in Hidalgo County, New Mexico, late-summer 2004 and 2005 Annual California Sea Otter Census: 2018 Census Summary Shapefile Annual California Sea Otter Census: 2019 Census Summary Shapefile Shale gas data used in development of the Disturbance Intensity Index for the Pennsylvania portion of the Upper Susquehanna River basin in Maloney et al. 2018 Greater sage-grouse population change (percent change) over 50-years in a low oil and gas development, low population estimate scenario, and with effects of climate change under an RCP 8.5 scenario (2050) Greater sage-grouse population change (percent change) in a high oil and gas development, low population estimate scenario, and with no effects of climate change (2006-2062) Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 1 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 2 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 4 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 5 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 7 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 8 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 6 (Nevada), Interim The Sagebrush Biome Range Extent, as Derived from Classified Landsat Imagery