Skip to main content
Advanced Search

Filters: Tags: biota (X) > Types: OGC WMS Layer (X) > partyWithName: Arctic Landscape Conservation Cooperative (X) > Types: OGC WMS Service (X) > partyWithName: LCC Network Data Steward (X) > partyWithName: National Fish and Wildlife Foundation (X)

12 results (87ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Contemporary observations suggest that water may disappear entirely from portions of some North Slope stream-beds during periods of drought or low flow. Climate models project even drier summers in the future. This could pose a problem for migrating fish that must be able to move back and forth from breeding and summer feeding areas to scarce overwintering sites. This work uses the best available long-term hydrologic data set for the North Slope (in the upper Kuparuk River watershed) to develop a model to assess the vulnerability of stream systems to periodic drought, and the vulnerability of migrating fish to a loss of stream connectivity.
thumbnail
The purpose of this project is to provide better information to industry and regulatory agencies regarding the likely locations of polar bear dens. This project integrates snow physics, high-resolution digital elevation data, and bear biology to produce more refined and accurate maps predicting suitable polar bear den habitat than are currently available. The work consists of data gathering, consultation between snow and bear scientists, modeling, and sensitivity studies to understand the various factors influencing den location and evolution along the Beaufort Coast.The proposed work is intended to refine current methods of identifying polar bear denning sites by incorporating higher-resolution topographic data...
thumbnail
Arctic grayling (Thymallus arcticus) have a life-history strategy specifically adapted to the extreme climate of the North. These fish migrate to spawning grounds just after breakup in the spring, then migrate to feeding sites in early summer, and finally in the fall migrate back to their overwintering sites. The Kuparuk River is a perennial stream originating in the northern foothills of the Brooks Range on the North Slope of Alaska. Sections of the Kuparuk are periodically intermittent in that, during low flows in the system, these channel reaches appear dry. The flow varies between surface and subsurface in this permafrost-dominated environment, with subsurface flow being limited to the unfrozen thaw bulb around...
thumbnail
Arctic wetlands, where millions of local and migratory birds nest, are composed of a mosaic of ice wedge polygons, non-patterned tundra, and large vegetated drained thaw lake basins. Regional climate projections suggest that evapotranspiration, rainfall, and snowfall will increase, making it difficult to predict how surface water distribution might change and how habitats for the invertebrate resources used by waterbirds will be impacted. This study will focus on evaluating how climate change will affect the invertebrate community, and whether the change in climate (through changes in hydrology and surface energy balance) could induce a trophic mismatch that might alter the growth and survival of shorebird young....
thumbnail
Researchers from the University of Alaska Fairbanks (UAF) willdevelop a model that examines the relationship betweenmeasured steam flow and surface water connectivity betweensummer feeding and overwintering habitats for fish on theNorth Slope.
thumbnail
Historically, available polar bear den habitat models have been based primarily on the presence of topographic features capable of capturing drifting snow. In any given season, however, the availability and precise location of snowdrifts of sufficient size to accommodate a bear den depends on the antecedent snowfall and wind conditions, and these vary from one year to the next. Thus, suitable topography is a necessary pre-condition, but is not sufficient to accurately predict potential den sites in a given year. To satisfy the requirements of agency and industry managers what is needed is a user-friendly decision-support tool that takes into account the current fall and early-winter meteorological conditions, and...
thumbnail
We assessed change in the seasonal timing of insect emergence from tundra ponds near Barrow, Alaska over a four-decade timespan, and explored factors that regulate this significant ecological phenomenon. The early-summer pulse of adult insects emerging from myriad tundra ponds on the Arctic Coastal Plain is an annual event historically coincident with resource demand by tundra-nesting avian consumers. Asymmetrical changes in the seasonal timing of prey availability and consumer needs may impact arctic-breeding shorebirds, eiders, and passerines. We have found evidence of change in the thermal behavior of these arctic wetlands, along with a shift in the phenology of emerging pond insects. Relative to the 1970s, tundra...
thumbnail
Throughout the Arctic most pregnant polar bears (Ursus maritimus) construct maternity dens in seasonal snowdrifts that form in wind-shadowed areas. We developed and verified a spatial snowdrift polar bearden habitat model (SnowDens-3D) that predicts snowdrift locations and depths along Alaska’s Beaufort Sea coast. SnowDens-3D integrated snow physics, weather data, and a high-resolution digital elevation model (DEM) to produce predictions of the timing, distribution, and growth of snowdrifts suitable for polar bear dens. SnowDens-3D assimilated 18 winters (1995 through 2012) of observed daily meteorological data and a 2.5 m grid-increment DEM covering 337.5 km2 of the Beaufort Sea coast, and described the snowdrift...
thumbnail
Historically, available den habitat models have been based primarily on the presence of topographic features capable of capturing drifting snow. In any given season, however, the availability and precise location of snowdrifts of sufficient size to accommodate a bear den depends on the antecedent snowfall and wind conditions, and these vary from one year to the next. Thus, suitable topography is a necessary pre-condition, but is not sufficient to accurately predict potential den sites in a given year.To satisfy the requirements of agency and industry managers what is needed is a user-friendly decision-support tool that takes into account the current fall and early-winter meteorological conditions, and provides den...
thumbnail
To better understand and predict effects of climate change on wetlands, invertebrates and shorebirds, the ‘CEWISH’ group,composed of Cryohydrology, Invertebrate, Shorebird Food Use, and Shorebird/Population Modeling teams, collected fielddata at Barrow, Alaska, between May and September 2014–2015. The Cryohydrology team measured end-of-wintersnow accumulation, snowmelt at the landscape scale, pond water levels, and pond water and sediment temperatures. TheInvertebrate team monitored emergence at historic ponds, and documented emergence rates of dominant chironomid taxaunder different experimentally controlled thermal regimes. The Shorebird Food Use team developed a DNA library ofpotential prey items using samples...
thumbnail
Polar bears along Alaska’s Beaufort Sea frequently give birth to young in land-based snow dens.These dens are established in November, typically in deep snowdrifts that have developed in thelee of cut-banks found along streams, rivers, and the coast. Durner et al. (2001, 2006) indicatedthat, for 24 known land den sites, the local slopes ranged from 15 to 50° and were 1.3 to 34 mhigh. The dens faced all directions but east. They published a distribution map based on habitatcharacteristics, presumably reflecting snow drifting, largely bracketing the generally northwardflowing drainages of the region. No attempt was made in the cited studies to model snow driftingexplicitly, though it was recognized that this was an...
thumbnail
We assessed change in the seasonal timing of insect emergence from tundra ponds near Barrow, Alaskaover a four-decade timespan, and explored factors that regulate this significant ecological phenomenon.The early-summer pulse of adult insects emerging from myriad tundra ponds on the Arctic Coastal Plainis an annual event historically coincident with resource demand by tundra-nesting avian consumers.Asymmetrical changes in the seasonal timing of prey availability and consumer needs may impact arcticbreedingshorebirds, eiders, and passerines. We have found evidence of change in the thermal behaviorof these arctic wetlands, along with a shift in the phenology of emerging pond insects. Relative to the1970s, tundra ponds...


    map background search result map search result map Mapping Suitable Snow Habitat for Polar Bear Denning Along the Beaufort Coast of Alaska Linking North Slope Climate, Hydrology, and Fish Migration Operational Polar Bear Den Mapping SnowDens-3D User Documentation Linking North Slope of Alaska climate, hydrology, and fish migration Modeling snowdrift habitat for polar bear dens Final Report Narrative to National Fish and Wildlife Fund:  Climate, Wetlands and Waterbirds Interdisciplinary Project Interdisciplinary Study of How Climate Change May Affect Wetland Habitats, Invertebrates and Shorebirds Changing Seasonality of Invertebrate Food Resources across the Arctic Coastal Plain Climate and Fish Migration Factsheet Seasonality of Invertebrates Final Report Mapping Suitable Snow Habitat for Polar Bear Denning Final Report Mapping Suitable Snow Habitat for Polar Bear Denning Along the Beaufort Coast of Alaska Mapping Suitable Snow Habitat for Polar Bear Denning Final Report Linking North Slope Climate, Hydrology, and Fish Migration Linking North Slope of Alaska climate, hydrology, and fish migration Climate and Fish Migration Factsheet Operational Polar Bear Den Mapping Changing Seasonality of Invertebrate Food Resources across the Arctic Coastal Plain Seasonality of Invertebrates Final Report Modeling snowdrift habitat for polar bear dens SnowDens-3D User Documentation Final Report Narrative to National Fish and Wildlife Fund:  Climate, Wetlands and Waterbirds Interdisciplinary Project Interdisciplinary Study of How Climate Change May Affect Wetland Habitats, Invertebrates and Shorebirds