Skip to main content
Advanced Search

Filters: Tags: biota (X) > Types: OGC WMS Layer (X) > Types: Shapefile (X) > Types: GeoTIFF (X)

6 results (52ms)   

View Results as: JSON ATOM CSV
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Aerial photographs were taken along the Little Missouri River in 2003, however the 2003 IKONOS satellite imagery is proprietary and therefore cannot be served here. The channel delineations for all years, including 2003, and the delineation of the outer flood-plain boundary are stored as shapefiles and are included in this data release. All images were geo-referenced to the 1995 digital orthophoto quarter quadrangles as described by Miller and Friedman (2009). Both the flood plain and active channel of the river were delineated on the 1995 digital orthophoto quadrangles and overlaid on rectified photos. ArcGIS was used to draw the polygons that delineate the flood plain and active channel; the delineation was saved...
thumbnail
4 aerial photographs were taken along the Little Missouri River in 1974. All images were geo-referenced to the 1995 digital orthophoto quarter quadrangles as described by Miller and Friedman (2009). Both the flood plain and active channel of the river were delineated on the 1995 digital orthophoto quadrangles and overlaid on rectified photos. ArcGIS was used to draw the polygons that delineate the flood plain and active channel; the delineation was saved as a SHP file. The separate images (geoTIFFs) can be viewed as a composite along with that year's channel delineation (SHP file) using a geographic information system (GIS) application. Reference: Miller, J.R., and J.M. Friedman. 2009. Influence of flow variability...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
These data sets were developed for Pictured Rocks National Lakeshore (PIRO) in the Upper Peninsula of Michigan to identify the effects of beech bark disease on the forest connectivity and assist park staff in answering different wildlife management questions.


    map background search result map search result map Shapefiles and Historical Aerial Photographs, Little Missouri River, 1974 Shapefiles and Historical Aerial Photographs, Little Missouri River, 2003 DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Cape Lookout, NC, 2014 DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Cape Hatteras, NC, 2014 DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Smith Island, VA, 2014 Pictured Rocks National Lakeshore (PIRO): Effects of beech bark disease on forest connectivity in Pictured Rocks National Lakeshore from 2005 to 2018 DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Smith Island, VA, 2014 Shapefiles and Historical Aerial Photographs, Little Missouri River, 1974 Pictured Rocks National Lakeshore (PIRO): Effects of beech bark disease on forest connectivity in Pictured Rocks National Lakeshore from 2005 to 2018 DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Cape Lookout, NC, 2014 DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Cape Hatteras, NC, 2014