Skip to main content
Advanced Search

Filters: Tags: Kentucky (X) > Extensions: Raster (X)

7 results (33ms)   

View Results as: JSON ATOM CSV
thumbnail
This publication provides digital flight line data for a high-resolution magnetic and radiometric survey over an area of southeast Illinois, western Kentucky, and southern Indiana. The survey includes airborne geophysical data collected as part of the U.S. Geological Survey (USGS) Earth Mapping Resource Initiative (Earth MRI) effort (Day, 2019). Earth MRI is a cooperative effort between the USGS, the Association of American State Geologists, and other Federal, State, and private sector organizations to improve our knowledge of the geologic framework of the United States. Data for this survey were collected by EON Geosciences under contract with the USGS using a fixed wing aircraft with a magnetometer mounted in...
Categories: Data, Data Release - In Progress; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service, Raster; Tags: AASG, Association of American State Geologists, Ballard County, Caldwell County, Carlisle County, All tags...
thumbnail
A one-year seismic hazard forecast for the Central and Eastern United States, based on induced and natural earthquakes, has been produced by the U.S. Geological Survey. The model assumes that earthquake rates calculated from several different time windows will remain relatively stationary and can be used to forecast earthquake hazard and damage intensity for the year 2016. This assessment is the first step in developing an operational earthquake forecast for the CEUS, and the analysis could be revised with updated seismicity and model parameters. Consensus input models consider alternative earthquake catalog durations, smoothing parameters, maximum magnitudes, and ground motion estimates, and represent uncertainties...
thumbnail
Of the approximately 6.6 million people living in the Mississippi embayment (MISE) region in the central United States, approximately 65 percent rely on groundwater for their drinking water (Dieter, Linsey, and others, 2017). Regional assessments of water quality in principal aquifer systems provide context for the long-term availability of these water resources for drinking-water supplies. To assess the current (2018) status of water quality in MISE in relation to drinking water supplies, groundwater withdrawal zones used for domestic and public supply were modeled using available groundwater well and hydrogeologic framework data. Three dimensional surfaces were modeled to map the depth zones at which groundwater...
thumbnail
This publication provides digital flight line data for a high-resolution magnetic and radiometric survey over an area of southeast Illinois, western Kentucky, and southern Indiana. The survey includes airborne geophysical data collected as part of the U.S. Geological Survey (USGS) Earth Mapping Resource Initiative (Earth MRI) effort (Day, 2019). Earth MRI is a cooperative effort between the USGS, the Association of American State Geologists, and other Federal, State, and private sector organizations to improve our knowledge of the geologic framework of the United States. Data for this survey were collected by EON Geosciences under contract with the USGS using a fixed wing aircraft with a magnetometer mounted in...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, Raster; Tags: AASG, Association of American State Geologists, Ballard County, Caldwell County, Carlisle County, All tags...
thumbnail
This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.05 degrees in latitude and longitude. It represents the average Modified Mercalli Intensity (MMI) with a 1-percent probability of exceedance in 1 year. Using a topographic-based soil classification method, the ground motions are amplified for soil type. The MMI values are the average of the MMI values obtained by converting peak ground acceleration to MMI and 1.0-second spectral response acceleration to MMI. The data are for the Central and Eastern United States and are based on the one-year model.
thumbnail
A one-year seismic hazard forecast for the Central and Eastern United States, based on induced and natural earthquakes, has been produced by the U.S. Geological Survey. The model assumes that earthquake rates calculated from several different time windows will remain relatively stationary and can be used to forecast earthquake hazard and damage intensity for the year 2016. This assessment is the first step in developing an operational earthquake forecast for the CEUS, and the analysis could be revised with updated seismicity and model parameters. Consensus input models consider alternative earthquake catalog durations, smoothing parameters, maximum magnitudes, and ground motion estimates, and represent uncertainties...
thumbnail
A one-year seismic hazard forecast for the Central and Eastern United States, based on induced and natural earthquakes, has been produced by the U.S. Geological Survey. The model assumes that earthquake rates calculated from several different time windows will remain relatively stationary and can be used to forecast earthquake hazard and damage intensity for the year 2016. This assessment is the first step in developing an operational earthquake forecast for the CEUS, and the analysis could be revised with updated seismicity and model parameters. Consensus input models consider alternative earthquake catalog durations, smoothing parameters, maximum magnitudes, and ground motion estimates, and represent uncertainties...


    map background search result map search result map Modified Mercalli Intensity based on peak ground acceleration, with 1-percent probability of exceedance in 1 year for the Central and Eastern United States Modified Mercalli Intensity based on horizontal spectral response acceleration for 1.0-second period, with 1-percent probability of exceedance in 1 year for the Central and Eastern United States Modified Mercalli Intensity based on the average of horizontal spectral response acceleration for 1.0-second period and peak ground acceleration, with 1-percent probability of exceedance in 1 year for the Central and Eastern United States Modified Mercalli Intensity based on the average of horizontal spectral response acceleration for 1.0-second period and peak ground acceleration, with 1-percent probability of exceedance in 1 year for the Central and Eastern United States Groundwater withdrawal zones for drinking water from the Mississippi River Valley alluvial aquifer and Mississippi embayment aquifers Hicks Dome Magnetic Data Hicks Dome Radiometric Data Hicks Dome Magnetic Data Hicks Dome Radiometric Data Groundwater withdrawal zones for drinking water from the Mississippi River Valley alluvial aquifer and Mississippi embayment aquifers Modified Mercalli Intensity based on peak ground acceleration, with 1-percent probability of exceedance in 1 year for the Central and Eastern United States Modified Mercalli Intensity based on horizontal spectral response acceleration for 1.0-second period, with 1-percent probability of exceedance in 1 year for the Central and Eastern United States Modified Mercalli Intensity based on the average of horizontal spectral response acceleration for 1.0-second period and peak ground acceleration, with 1-percent probability of exceedance in 1 year for the Central and Eastern United States Modified Mercalli Intensity based on the average of horizontal spectral response acceleration for 1.0-second period and peak ground acceleration, with 1-percent probability of exceedance in 1 year for the Central and Eastern United States