Skip to main content
Advanced Search

Filters: Tags: Effects of change in air temp. and precip. on forests (X) > partyWithName: Data Basin (X)

71 results (14ms)   

View Results as: JSON ATOM CSV
thumbnail
Vegetation types from Kuchler (1975) potential vegetation map were aggregated into 35 classes as part of the VEMAP project (Vegetation/Ecosystem Modeling and Analysis Project, Kittel et al. 1995). Functional vegetation types were reclassified (grouped in ArcMap) by the Conservation Biology Institute to reflect the classification scheme used by Brendan Rogers.
thumbnail
Climate data (NCEP: Average Annual Temperature, 1968-1999) have been generated using a regional climate model called RegCM3 using boundary conditions from observations or general circulation models for historical conditions, and from GCM projections for future conditions. Regional climate model description: RegCM3 is the third generation of the Regional Climate Model originally developed at the National Center for Atmospheric Research during the late 1980s and early 1990s. Details on current model components and applications of the model can be found in numerous publications (e.g., Giorgi et al, 2004a,b, Pal et al, 2007), the ICTP RegCNET web site (http://users.ictp.it/RegCNET/model.html), and the ICTP RegCM publications...
thumbnail
This dataset depicts the Difference for Average Summer Temperature for Jul-Sep for 2045-2060 compared to 1968-1999 for GFDL. These data have been generated using a regional climate model called RegCM3 using boundary conditions from observations or general circulation models for historical conditions, and from GCM projections for future conditions. Regional climate model description: RegCM3 is the third generation of the Regional Climate Model originally developed at the National Center for Atmospheric Research during the late 1980s and early 1990s. Details on current model components and applications of the model can be found in numerous publications (e.g., Giorgi et al, 2004a,b, Pal et al, 2007), the ICTP RegCNET...
thumbnail
Change in the majority generalized vegetation type for each HUC5 watershed between historical (1971-2000) and future (2071-2100) time periods. The MC1 dynamic vegetation model was run under the CSIRO, MIROC, and Hadley climate change projections and the A2 anthropogenic emissions scenario. Majority generalized vegetation type was determined for each HUC5 watershed from from original ~ 4 km raster data. Generalized vegetation types were assigned by combining detailed MC1 vegetation classes into four general catagories: desert, grassland, shrubland, and forest. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Background:...
thumbnail
Percent change in the mean area burned per year (per ~4 km pixel) for each HUC5 watershed between historical (1971-2000) and future (2071-2100) time periods. The MC1 dynamic vegetation model was run under the CSIRO, MIROC, and Hadley climate change projections and the A2 anthropogenic emissions scenario. Mean area burned per year per ~4 km pixel (in square meters), was determined for each HUC5 watershed. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al. 2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water...
thumbnail
This package contains 13 polygon layers representing baseline and predicted future climate niches (2050s & 2080s) of Pacific silver fir (Abies amabilis). The modeling algorithm Maxent and the Worldclim predictor set have been used to compute niche projections under two emission scenarios (A1B & A2A) based on three general circulation models (CSIRO, CCCMA & HADCM3). The shapefiles are derived from gridded model outputs with a grid cell resolution of 30 arc-seconds.
thumbnail
This package contains 13 polygon layers representing baseline and predicted future climate niches (2050s & 2080s) of Sitka Spruce (Picea sitchensis). The modeling algorithm Maxent and the Worldclim predictor set have been used to compute niche projections under two emission scenarios (A1B & A2A) based on three general circulation models (CSIRO, CCCMA & HADCM3). The shapefiles are derived from gridded model outputs with a grid cell resolution of 30 arc-seconds.
thumbnail
This dataset represents the average amount of Growing Degree Days (GDD) per year within each HUC5 watershed, simulated by the model MC1 for the 30-year period 1971-2000. Growing degree days (referenced to 0oC) (unit = deg C days) were determined for each HUC5 watershed. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries. They were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al. 2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, and wild fire impacts for OR, WA, AZ and NM, for a project funded by the USDA Forest Service (PNW 09-JV-11261900-003). The MC1 model...
thumbnail
For his MS thesis, Brendan Rogers used climate data from the PRISM group (Chris Daly, Oregon State University) at a 30arc second (800m) spatial grain across the western 2/3 of the states of Oregon and Washington to generate a climatology or baseline. He then created future climate change scenarios using statistical downscaling to create anomalies from three General Circulation Models (CSIRO Mk3, MIROC 3.2 medres, and Hadley CM 3), each run through three CO2 emission scenarios (SRES B1, A1B, and A2).
thumbnail
Two future climate change scenarios at a resolution of 0.5 degree latitude/longitude for the conterminous United States were used in the Vegetation Ecosystems Modelling Analysis Project (VEMAP): a moderately warm scenario produced by the general circulation model from the Hadley Climate Centre [Johns et al., 1997; Mitchell and Johns, 1997], HADCM2SUL (up to a 2.8oC increase in average annual U.S. temperature in 2100) and a warmer scenario (up to a 5.8oC increase in average annual U.S. temperature in 2100), CGCM1, from the Canadian Climate Center [Boer et al., 1999a, 1999b; Flato et al., 1999]. Both general circulation models (GCMs) included sulfate aerosols and a fully dynamic 3-D ocean. Both transient scenarios...
thumbnail
This dataset represents the historical majority vegetation type (30 year mode), for each HUC5 watershed, simulated by the model MC1 for the 30-year period 1971-2000. Majority vegetation type was determined for each HUC5 watershed by calculating the 30 year mode from original ~ 4 km raster data. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al.2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, a nd wild fire impacts for OR, WA, AZ and NM, for a project funded by the USDA Forest Service (PNW09-JV-11261900-003)....
thumbnail
Climate data (NCEP: Average Annual Total Precipitation, 1968-1999) have been generated using a regional climate model called RegCM3 using boundary conditions from observations or general circulation models for historical conditions, and from GCM projections for future conditions. Regional climate model description: RegCM3 is the third generation of the Regional Climate Model originally developed at the National Center for Atmospheric Research during the late 1980s and early 1990s. Details on current model components and applications of the model can be found in numerous publications (e.g., Giorgi et al, 2004a,b, Pal et al, 2007), the ICTP RegCNET web site (http://users.ictp.it/RegCNET/model.html), and the ICTP...
thumbnail
Percent change in the average C3 grass fraction (a biogeographic index based on the ratio of C3 to C4 grass) for each HUC5 watershed between historical (1971-2000) and future (2071-2100) time periods. The MC1 dynamic vegetation model was run under the CSIRO, MIROC, and Hadley climate change projections and the A2 anthropogenic emissions scenario. Simulated mean C3 grass fraction was determined for each HUC5 watershed. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al. 2001) was used to simulate vegetation dynamics, associated carbon and nitrogen...
thumbnail
This dataset depicts the Difference of Winter Precipitation for 2045-2060 compared to 1968-1999 for GFDL. These data have been generated using a regional climate model called RegCM3 using boundary conditions from observations or general circulation models for historical conditions, and from GCM projections for future conditions. Regional climate model description: RegCM3 is the third generation of the Regional Climate Model originally developed at the National Center for Atmospheric Research during the late 1980s and early 1990s. Details on current model components and applications of the model can be found in numerous publications (e.g., Giorgi et al, 2004a,b, Pal et al, 2007), the ICTP RegCNET web site (http://users.ictp.it/RegCNET/model.html),...
thumbnail
Using the simple anomaly method (modifying a historical baseline with differences or ratios projected by General Circulation Models), scientists from the California Academy of Sciences downscaled monthly average temperature and monthly total precipitation from 16 different global circulation models (GCMs). The GCMs were described in the latest Intergovernmental Panel for Climate Change (IPCC 2007) and archived at the WCRP PCMDI (http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php). Monthly maximum temperature and monthly minimum temperatures were downscaled from the only 6 GCMs that archived these particular variables. Scientists used Worldclim v.1.4 (Hijmans et al 2005) at 5 arc-minute (~10km) spatial grain as the current...
thumbnail
Climate data (GENMOM: Average Annual Total Precipitation, 2045-2060) have been generated using a regional climate model called RegCM3 using boundary conditions from observations or general circulation models for historical conditions, and from GCM projections for future conditions. Regional climate model description: RegCM3 is the third generation of the Regional Climate Model originally developed at the National Center for Atmospheric Research during the late 1980s and early 1990s. Details on current model components and applications of the model can be found in numerous publications (e.g., Giorgi et al, 2004a,b, Pal et al, 2007), the ICTP RegCNET web site (http://users.ictp.it/RegCNET/model.html), and the ICTP...
thumbnail
Climate data (Average Seasonal Precipitation for Jan-Mar for 1968-1999) were created by PRISM (Parameter-elevation Regressions on Indepenent Slopes Model - prism.oregonstate.edu) on a 2.5 arc-minute lat-lon grid. They are based on historical observations from 1968-1999. We created mean monthly climatologies for that period from the PRISM data, and reprojected the results to the BLM Albers 4km grid. We used these results as a historical baseline climate to de-bias RegCM3 projections. We also compiled annual and seasonal summaries of precipitation and temperature from the PRISM data to allow for simple comparisons with other climatologies.
thumbnail
This package contains 13 polygon layers representing baseline and predicted future climate niches (2050s & 2080s) of Grand fir (Abies grandis). The modeling algorithm Maxent and the Worldclim predictor set have been used to compute niche projections under two emission scenarios (A1B & A2A) based on three general circulation models (CSIRO, CCCMA & HADCM3). The shapefiles are derived from gridded model outputs with a grid cell resolution of 30 arc-seconds.
thumbnail
Percent change in carbon consumed by fire for each HUC5 watershed between historical (1971-2000) and future (2071-2100) time periods. The MC1 dynamic vegetation model was run under the CSIRO, MIROC, and Hadley climate change projections and the A2 anthropogenic emissions scenario. Carbon in biomass consumed by fire, in g m-2 yr-1, was determined for each HUC5 watershed. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al. 2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, and wild fire impacts for OR,...
thumbnail
Percent change in the average annual amount of live tree carbon for each HUC5 watershed between historical (1971-2000) and future (2071-2100) time periods. The MC1 dynamic vegetation model was run under the CSIRO, MIROC, and Hadley climate change projections and the A2 anthropogenic emissions scenario. Mean live forest carbon (output variable C_Forestyr in MC1 version B60, which includes both above and below-ground tree carbon,) was determined for each HUC5 watershed. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Units are grams per square meter, and percent change was calculated as (C_Forestyr(2071-2100) minus C_Forestyr(1971-2000))...


map background search result map search result map Aggregated potential vegetation map from Kuchler (1975) for the western 2/3 of OR and WA Average Annual Total Precipitation 1968 - 1999 NCEP - driven RegCM3 climate model Average Annual Total Precipitation GCM-driven RegCM3 climate model 4KM Original: Average Summer Temperature (1968-1999) from NCEP-driven RegCM3 climate model (Western US) 4KM Difference: Average Summer Temperature for Jul-Sep (2045-2060) from GFDL-driven RegCM3 climate model (Western US) 4KM PRISM: Average Winter Precipitation for Jan-Mar (1968-1999) from PRISM (Western US) Baseline and predicted future climate niches of Grand fir (Abies grandis) based on three general circulation models and two emission scenarios Baseline and predicted future climate niches of Pacific silver fir (Abies amabilis) based on three general circulation models and two emission scenarios Baseline and predicted future climate niches of Sitka Spruce (Picea sitchensis) based on three general circulation models and two emission scenarios Historical Growing Degree Days (average 1971-2000) for OR and WA, USA Projected annual average temperature (degrees C) under CCC future climate scenario 2070-2099 (VEMAP version) Projected (2070-2099) mean monthly temperature (degrees C) under Miroc A2 for western Oregon and Washington (USA) Seasonal summer maximum temperature (Celsius), 2080-2099, average of 6 GCMs, A2 emission scenario Simulated change in generalized vegetation types between historical and future time periods under three climate change projections for OR and WA, USA Simulated historical majority vegetation type (1971-2000: 30 yr mode) for OR and WA, USA Simulated percent change in area burned between historical and future time periods under three climate change projections for OR and WA, USA Simulated percent change in C3 grass fraction between historical and future time periods under three climate change projections for OR and WA, USA Simulated percent change in carbon consumed by fire between historical and future time periods under three climate change projections for OR and WA, USA Simulated percent change in live forest carbon between historical and future time periods under three climate change projections for OR and WA, USA 4KM Difference: Winter Precipitation (2045-2060) from GFDL-driven RegCM3 climate model (Western US) Aggregated potential vegetation map from Kuchler (1975) for the western 2/3 of OR and WA Projected (2070-2099) mean monthly temperature (degrees C) under Miroc A2 for western Oregon and Washington (USA) Simulated percent change in area burned between historical and future time periods under three climate change projections for OR and WA, USA Simulated percent change in carbon consumed by fire between historical and future time periods under three climate change projections for OR and WA, USA Historical Growing Degree Days (average 1971-2000) for OR and WA, USA Simulated change in generalized vegetation types between historical and future time periods under three climate change projections for OR and WA, USA Simulated historical majority vegetation type (1971-2000: 30 yr mode) for OR and WA, USA Simulated percent change in C3 grass fraction between historical and future time periods under three climate change projections for OR and WA, USA Simulated percent change in live forest carbon between historical and future time periods under three climate change projections for OR and WA, USA Average Annual Total Precipitation 1968 - 1999 NCEP - driven RegCM3 climate model Average Annual Total Precipitation GCM-driven RegCM3 climate model 4KM Original: Average Summer Temperature (1968-1999) from NCEP-driven RegCM3 climate model (Western US) 4KM Difference: Average Summer Temperature for Jul-Sep (2045-2060) from GFDL-driven RegCM3 climate model (Western US) 4KM PRISM: Average Winter Precipitation for Jan-Mar (1968-1999) from PRISM (Western US) 4KM Difference: Winter Precipitation (2045-2060) from GFDL-driven RegCM3 climate model (Western US) Baseline and predicted future climate niches of Pacific silver fir (Abies amabilis) based on three general circulation models and two emission scenarios Projected annual average temperature (degrees C) under CCC future climate scenario 2070-2099 (VEMAP version) Baseline and predicted future climate niches of Grand fir (Abies grandis) based on three general circulation models and two emission scenarios Baseline and predicted future climate niches of Sitka Spruce (Picea sitchensis) based on three general circulation models and two emission scenarios Seasonal summer maximum temperature (Celsius), 2080-2099, average of 6 GCMs, A2 emission scenario