Skip to main content
Advanced Search

Filters: Contacts: {oldPartyId:13502} (X) > Categories: Data (X)

37 results (22ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This data table contains mean decomposition rates and mean carbon:nitrogen ratios for different litter types buried in 7 marshes during 2015. Note that C:N data are repeated for low and high marsh areas at each site in the table. These data support the following publication: Janousek, C.N., Buffington, K.J., Guntenspergen, G.R. et al. Ecosystems (2017). doi:10.1007/s10021-017-0111-6. http://link.springer.com/article/10.1007/s10021-017-0111-6
thumbnail
This data set contains decomposition rates for litter of Salicornia pacifica, Distichlis spicata, and Deschampsia cespitosa buried at 7 tidal marsh sites in 2015. Sediment organic matter values were collected at a subset of sites. These data support the following publication: Janousek, C.N., Buffington, K.J., Guntenspergen, G.R. et al. Ecosystems (2017). doi:10.1007/s10021-017-0111-6. http://link.springer.com/article/10.1007/s10021-017-0111-6
thumbnail
Accurate elevation data in coastal wetlands is crucial for planning for sea-level rise. Elevation surveys were conducted across southwest Florida wetlands to provide ground validation of LiDAR as well as target long-term monitoring stations (surface elevation tables). Surveys were conducted in June 2021 across Ding Darling National Wildlife Refuge, Clam Bay, Rookery Bay National Estuarine Research Reserve, and Ten Thousand Islands National Wildlife Refuge. A combination of post-processed kinematic GPS and differential levelling survey techniques were employed, depending on the canopy cover.
thumbnail
This data table contains results for the 2014 mesocosm tests of inundation effects on decomposition. These data support the following publication: Janousek, C.N., Buffington, K.J., Guntenspergen, G.R. et al. Ecosystems (2017). doi:10.1007/s10021-017-0111-6. http://link.springer.com/article/10.1007/s10021-017-0111-6
thumbnail
Lidar-derived digital elevation models often contain a vertical bias due to vegetation. In areas with tidal influence the amount of bias can be ecologically significant, for example, by decreasing the expected inundation frequency. We generated a corrected digital elevation mode (DEM) for Suisun marsh using a modification of the Lidar Elevation Adjustment with NDVI (LEAN) technique (Buffington et al. 2016). GPS survey data (6912 points, collected across public and private land in 2018), Normalized Difference Vegetation Index (NDVI) derived from an airborne multispectral image (June 2018), a 1 m lidar DEM from September 2018, and a 1 m canopy surface model were used to generate models of predicted bias across the...
thumbnail
Lidar-derived digital elevation models often contain a vertical bias due to vegetation. In areas with tidal influence the amount of bias can be ecologically significant, for example, by decreasing the expected inundation frequency. We generated a corrected digital elevation mode (DEM) for tidal marsh areas around San Francisco Bay using the Lidar Elevation Adjustment with NDVI (LEAN) technique (Buffington et al. 2016). Survey-grade GPS survey data (6614 points), NAIP-derived Normalized Difference Vegetation Index, and original 1 m lidar DEM from 2010 were used to generate a model of predicted bias across tidal marsh areas. The predicted bias was then subtracted from the original lidar DEM and merged with the NOAA...
thumbnail
We quantified the potential area available for landward migration of tidal saline wetlands and freshwater wetlands due to sea-level rise (SLR) at the estuary scale for 166 estuarine drainage areas and at the state scale for 22 coastal states and District of Columbia. We used 2016 Coastal Change Analysis Program (C-CAP) data in combination with the future wetland migration data under the 1.5 m global SLR scenario to evaluate the potential for wetland migration into all the individual C-CAP classes and into the following six land cover categories: (1) freshwater forest (wetland); (2) freshwater marsh (wetland); (3) terrestrial forest (upland); (4) terrestrial grassland (upland); (5) agricultural croplands (upland);...
thumbnail
Elevation projections from the WARMER-Mangroves model for J N. "Ding" Darling National Wildlife Refuge across a range of sea-level rise scenarios (53, 115, and 183 cm by 2100). The model was calibrated using dated soil cores sampled from the basin hydrologic zone. These data support the following publication: Buffington, K.J., Thorne, K.M., Krauss, K.W., Conrad, J.K., Drexler, J.Z., and Zhu, Z., in-review. Vulnerability of Sanibel Island’s mangrove resources to sea-level rise (Florida, USA).
thumbnail
This data table contains summary data for temperature time series in near-surface sediments in high and low tidal marsh at 7 sites during 2015. These data support the following publication: Janousek, C.N., Buffington, K.J., Guntenspergen, G.R. et al. Ecosystems (2017). doi:10.1007/s10021-017-0111-6. http://link.springer.com/article/10.1007/s10021-017-0111-6
thumbnail
This table contains data on dry mass remaining in a subset of Salicornia pacifica and Deschampsia cespitosa litter bags removed over a series of time points spanning 6 months. These data support the following publication: Janousek, C.N., Buffington, K.J., Guntenspergen, G.R. et al. Ecosystems (2017). doi:10.1007/s10021-017-0111-6. http://link.springer.com/article/10.1007/s10021-017-0111-6
These datasets provide information on plant alpha, beta, and gamma diversity, and plant species abundance at several spatial scales for tidal wetlands along a salinity gradient in the San Francisco Bay-Delta and an impounded brackish wetland complex in Suisun Marsh, California. Files include diversity metrics calculated at the patch, site, and region scales, average percent cover of wetland dominant plants at the patch scale, and average percent cover of all wetland plants at the site scale. These data support the following paper: Jones, S.F., Janousek, C.N., Casazza, M.L., Takekawa, J.Y. and Thorne, K.M., 2021. Seasonal impoundment alters patterns of tidal wetland plant diversity across spatial scales. Ecosphere,...
thumbnail
Lidar-derived digital elevation models often contain a vertical bias due to vegetation. In areas with tidal influence the amount of bias can be ecologically significant, for example, by decreasing the expected inundation frequency. We generated a corrected digital elevation model (DEM) for wetlands throughout Collier county using a modification of the Lidar Elevation Adjustment with NDVI (LEAN) technique (Buffington et al. 2016). GPS survey data (15,223 points), NAIP-derived Normalized Difference Vegetation Index (2010), a 10 m lidar DEM from 2007, and a 10 m canopy surface model were used to generate a model of predicted bias across marsh, mangrove, and cypress habitats. The predicted bias was then subtracted from...
thumbnail
Elevation change and surface deposition are important drivers of salt marsh ecological processes and represent two of the fundamental variables for determining marsh resilience to sea-level rise. Surface Elevation Tables with Marker Horizons (SET-MH) were used to measure plot-scale elevation change (SETs) and surface deposition (MHs) in five USGS study marshes located in Humboldt Bay, CA. SET-MHs were installed in 2014 (Mad River marsh and Manila marsh) and in 2015 (Jacoby marsh, White marsh, and Hookton marsh) and were measured during quarterly site visits. The SET-MH network includes two SETs and six MHs in each of the five study marshes. Measuring elevation change at the two SETs in each study marsh involves...
thumbnail
This dataset provides seedling density and site characteristics for 131 plots in Whiskeytown National Recreation Area in California, USA. Site characteristics include modeled seed availability and terrain indices calculated using a 1 meter resolution digital elevation model (DEM).
thumbnail
This datasets summarizes small mammal trapping efforts that USGS San Francisco Bay Estuary Field Station has led, co-led, or supervised, to detect and monitor the endangered salt marsh harvest mouse (Reithrodontomys raviventris) in the northern reaches of San Francisco Bay from 1998-2014. As the salt marsh harvest mouse is listed as endangered under the Endangered Species Act, sensitive location information can be made available upon request by contacting the dataset point of contact. These data support the following publication: Marcot, B.G., Woo, I., Thorne, K.M., Freeman, C.M., and Guntenspergen, G.R., 2020. Habitat of the endangered salt marsh harvest mouse (Reithrodontomys raviventris) in San Francisco Bay....
thumbnail
Lidar-derived digital elevation models often contain a vertical bias due to vegetation. In areas with tidal influence the amount of bias can be ecologically significant, for example, by decreasing the expected inundation frequency. We generated a corrected digital elevation model (DEM) for the area surrounding Blackwater National Wildlife Refuge in Chesapeake Bay using a modification of the Lidar Elevation Adjustment with NDVI (LEAN) technique (Buffington et al. 2016). GPS survey data (3699 points, collected across four tidal marsh sites in Chesapeake Bay (Eastern Neck, Martin, Bishops Head, and Blackwater) in 2010 and 2017. Normalized Difference Vegetation Index (NDVI) derived from an airborne multispectral image...
thumbnail
This dataset contains avian survey observations across four tidal marsh areas around San Francisco Bay. Multiple surveys were conducted around both high and low tides during the winter of 2010/11. Each survey alternated between scan and focals. During scans, all observable birds were counted. During focals, the behavior of a single, randomly selected bird was observed. Water level data was collected concurrently at each site and is provided with the avian survey data. These data support the following publication: Thorne, K.M., Spragens, K.A., Buffington, K.J., Rosencranz, J.A. and Takekawa, J., 2019. Flooding regimes increase avian predation on wildlife prey in tidal marsh ecosystems. Ecology and evolution, 9(3),...
thumbnail
To assess the current topography of tidal marsh at the study sites we conducted survey-grade global positioning system (GPS) surveys between 2009 and 2014 using a Leica RX1200 Real Time Kinematic (RTK) rover (±1 cm horizontal, ±2 cm vertical accuracy; Leica Geosystems Inc., Norcross, GA; Figure 4). At sites with RTK GPS network coverage (Padilla, Port Susan, Nisqually, Siletz, Bull Island, and Bandon), rover positions were received in real time from the Leica Smartnet system via a CDMA modem (www.lecia-geosystems.com). At sites without network coverage (Skokomish, Grays Harbor, and Willapa), rover positions were received in real time from a Leica GS10 antenna base station via radio link. At sites where we used the...
thumbnail
Model projections of mangrove soil elevation under a range of sea-level rise scenarios (37, 52, 67, and 117 cm by 2100). Soil elevation changed in response to mineral and organic matter inputs and relative changes in sea-level. The model was calibrated using dated soil cores, extensive elevation and vegetation survey data, and water level observations around Pohnpei. Mean elevation for each region was calculated from 100 Monte Carlo simulations and were output annually from 2020-2100. Further details on model development, calibration, and validation are provided in the full report.


map background search result map search result map Inundation Experiments, 2014 Decomposition rates and carbon:nitrogen ratios for different litter types, 2015 Litter Decomposition Rates, 2015 Sediment Temperature, 2015 Linear loss of litter over time, 2015 Digital Elevation Models for eight study areas in coastal Oregon and Washington, 2012 LEAN-corrected San Francisco Bay Digital Elevation Model, 2018 LEAN-Corrected DEM for Suisun Marsh San Francisco Bay Tidal Marsh Avian Predator Surveys, 2010 Blackwater LEAN-Corrected Chesapeake Bay Digital Elevation Models, 2019 LEAN-Corrected Collier County DEM for wetlands Small Mammal Surveys from Northern San Francisco Bay: 1998-2014 Impounded and tidal wetland plant diversity and composition across spatial scales, San Francisco Bay-Delta, California, USA (2016-2018) Elevation Projections for Pohnpei Mangrove Forests Under a Range of Sea-level Rise Scenarios, 2020-2100 Potential landward migration of coastal wetlands in response to sea-level rise within estuarine drainage areas and coastal states of the conterminous United States Surface deposition and elevation change in five salt marshes, Humboldt Bay, CA, 2014-2019 Elevation Survey Across Southwest Florida Coastal Wetlands, 2021 Data Describing Site Characteristics Including Conifer Regeneration Following the 2018 Carr Fire in Whiskeytown National Recreation Area Elevation and Mangrove Cover Projections under Sea-Level Rise Scenarios at J.N. Ding Darling National Wildlife Refuge, Sanibel Island, Florida, 2020-2100 Elevation and Mangrove Cover Projections under Sea-Level Rise Scenarios at J.N. Ding Darling National Wildlife Refuge, Sanibel Island, Florida, 2020-2100 Data Describing Site Characteristics Including Conifer Regeneration Following the 2018 Carr Fire in Whiskeytown National Recreation Area Surface deposition and elevation change in five salt marshes, Humboldt Bay, CA, 2014-2019 Elevation Projections for Pohnpei Mangrove Forests Under a Range of Sea-level Rise Scenarios, 2020-2100 LEAN-Corrected DEM for Suisun Marsh Small Mammal Surveys from Northern San Francisco Bay: 1998-2014 Blackwater LEAN-Corrected Chesapeake Bay Digital Elevation Models, 2019 Elevation Survey Across Southwest Florida Coastal Wetlands, 2021 LEAN-corrected San Francisco Bay Digital Elevation Model, 2018 LEAN-Corrected Collier County DEM for wetlands Impounded and tidal wetland plant diversity and composition across spatial scales, San Francisco Bay-Delta, California, USA (2016-2018) Digital Elevation Models for eight study areas in coastal Oregon and Washington, 2012 Inundation Experiments, 2014 Decomposition rates and carbon:nitrogen ratios for different litter types, 2015 Litter Decomposition Rates, 2015 Sediment Temperature, 2015 Linear loss of litter over time, 2015 Potential landward migration of coastal wetlands in response to sea-level rise within estuarine drainage areas and coastal states of the conterminous United States