Skip to main content
Advanced Search

Filters: Types: OGC WMS Layer (X) > Types: OGC WFS Layer (X) > Types: OGC WMS Service (X) > Types: Map Service (X)

Folders: ROOT > ScienceBase Catalog > LC MAP - Landscape Conservation Management and Analysis Portal > Appalachian Landscape Conservation Cooperative ( Show direct descendants )

23 results (61ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__LC MAP - Landscape Conservation Management and Analysis Portal
___Appalachian Landscape Conservation Cooperative
Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Systematic conservation planning is well suited to address the many large-scale biodiversity conservation challenges facing the Appalachian region. However, broad, well-connected landscapes will be required to sustain many of the natural resources important to this area into the future. If these landscapes are to be resilient to impending change, it will likely require an orchestrated and collaborative effort reaching across jurisdictional and political boundaries. The first step in realizing this vision is prioritizing discrete places and actions that hold the greatest promise for the protection of biodiversity. Five conservation design elements covering many critical ecological processes and patterns across the...
thumbnail
Efforts to model and predict long-term variations in climate-based on scientific understanding of climatological processes have grown rapidly in their sophistication to the point that models can be used to develop reasonable expectations of regional climate change. This is important because our ability to assess the potential consequences of a changing climate for particular ecosystems or regions depends on having realistic expectations about the kinds and severity of change to which a region may be exposed.The fifth phase of the Coupled Model Intercomparison Project (CMIP5) is a collaborative climate modeling research effort coordinated by the World Climate Research Programme (WCRP). This is the most recent phase...
thumbnail
Systematic conservation planning is well suited to address the many large-scale biodiversity conservation challenges facing the Appalachian region. However, broad, well-connected landscapes will be required to sustain many of the natural resources important to this area into the future. If these landscapes are to be resilient to impending change, it will likely require an orchestrated and collaborative effort reaching across jurisdictional and political boundaries. The first step in realizing this vision is prioritizing discrete places and actions that hold the greatest promise for the protection of biodiversity. Five conservation design elements covering many critical ecological processes and patterns across the...
thumbnail
This habitat is found primarily in the Interior Highlands of the Ozark, Ouachita, and Interior Low Plateau regions with scattered occurrences in northern Missouri. It occurs along moderate to steep slopes and steep valleys on primarily southerly to westerly facing slopes. Limestone and/or dolomite bedrock typify this system with shallow, moderately to well-drained soils interspersed with rocks. These soils often dry out during the summer and autumn, and then become saturated during the winter and spring. Fire is the primary natural dynamic, and prescribed fires help manage this system by restricting woody growth and maintaining the more open glade structure.
thumbnail
Systematic conservation planning is well suited to address the many large-scale biodiversity conservation challenges facing the Appalachian region. However, broad, well-connected landscapes will be required to sustain many of the natural resources important to this area into the future. If these landscapes are to be resilient to impending change, it will likely require an orchestrated and collaborative effort reaching across jurisdictional and political boundaries. The first step in realizing this vision is prioritizing discrete places and actions that hold the greatest promise for the protection of biodiversity. Five conservation design elements covering many critical ecological processes and patterns across the...
thumbnail
The American Community Survey (ACS) is a national, publicly available survey provided by the U.S. Census Bureau that collects information about population, education, housing, economic status, and more. Planners, public officials, entrepreneurs, and researchers rely on the data collected through this survey to help understand community conditions and to support community planning efforts. This dataset shows human population density per square mile in 2013.
thumbnail
Systematic conservation planning is well suited to address the many large-scale biodiversity conservation challenges facing the Appalachian region. However, broad, well-connected landscapes will be required to sustain many of the natural resources important to this area into the future. If these landscapes are to be resilient to impending change, it will likely require an orchestrated and collaborative effort reaching across jurisdictional and political boundaries. The first step in realizing this vision is prioritizing discrete places and actions that hold the greatest promise for the protection of biodiversity. Five conservation design elements covering many critical ecological processes and patterns across the...
thumbnail
Systematic conservation planning is well suited to address the many large-scale biodiversity conservation challenges facing the Appalachian region. However, broad, well-connected landscapes will be required to sustain many of the natural resources important to this area into the future. If these landscapes are to be resilient to impending change, it will likely require an orchestrated and collaborative effort reaching across jurisdictional and political boundaries. The first step in realizing this vision is prioritizing discrete places and actions that hold the greatest promise for the protection of biodiversity. Five conservation design elements covering many critical ecological processes and patterns across the...
thumbnail
The model was acquired from Tyler Wagner (U.S. Geological Survey) (DeWeber & Wagner, 2014). Model outputs were composed of Ecological Drainage Units (EDUs), each of which was assigned a resulting mean predicted occurrence probability. The study region was determined by the Eastern Brook Trout Joint Venture (EBTJV) and represents the native range of the species on the East Coast. The polygons of interest were derived from the NHD plus dataset, with local catchments located at least 90% within the study region boundary. Presence data was taken from fish sampling records collected from state agencies and the Multistage Aquatic Resources Information System (MARIS), and these points were joined to the nearest stream...
thumbnail
Hellbender presence data was acquired from NatureServe and limited to points dating from 1980 to the present, with individual points adapted from the available data. Geospatial data was acquired from the U.S. Geological Survey’s National Land Cover Database (NLCD) and the Horizon Systems Corporation National Hydrography Dataset (NHD) Version 2. The study was conducted over the extent of the Appalachian LCC. Environmental variables of consideration were determined through literature review and expert advice on the species (Personal correspondence, Quinn, 2009). Hellbender presence data was sub-sampled to reduce spatial bias. Pseudo-absence points were also calculated to be within 1 km of the position of the presence...
thumbnail
Efforts to model and predict long-term variations in climate-based on scientific understanding of climatological processes have grown rapidly in their sophistication to the point that models can be used to develop reasonable expectations of regional climate change. This is important because our ability to assess the potential consequences of a changing climate for particular ecosystems or regions depends on having realistic expectations about the kinds and severity of change to which a region may be exposed.The fifth phase of the Coupled Model Intercomparison Project (CMIP5) is a collaborative climate modeling research effort coordinated by the World Climate Research Programme (WCRP). This is the most recent phase...
thumbnail
Efforts to model and predict long-term variations in climate-based on scientific understanding of climatological processes have grown rapidly in their sophistication to the point that models can be used to develop reasonable expectations of regional climate change. This is important because our ability to assess the potential consequences of a changing climate for particular ecosystems or regions depends on having realistic expectations about the kinds and severity of change to which a region may be exposed.The fifth phase of the Coupled Model Intercomparison Project (CMIP5) is a collaborative climate modeling research effort coordinated by the World Climate Research Programme (WCRP). This is the most recent phase...
thumbnail
Systematic conservation planning is well suited to address the many large-scale biodiversity conservation challenges facing the Appalachian region. However, broad, well-connected landscapes will be required to sustain many of the natural resources important to this area into the future. If these landscapes are to be resilient to impending change, it will likely require an orchestrated and collaborative effort reaching across jurisdictional and political boundaries. The first step in realizing this vision is prioritizing discrete places and actions that hold the greatest promise for the protection of biodiversity. The irreplacebility of the landscape was assessed to determine the importance of conservation. The number...
thumbnail
Using GIS, the SILVIS Lab at the University of Wisconsin-Madison calculated housing and population counts at the block group level with data from the decennial U.S. Census to produce a spatially explicit dataset for the conterminous U.S. This data can help to understand where on the landscape the most and the least dense populations of people live. Housing density can be used as an indicator of urbanization and land-use intensification.
thumbnail
Landscape conservation cooperatives (LCCs) are conservation-science partnerships between the U.S. Fish and Wildlife Service, U.S. Geological Survey (USGS), and other federal agencies, states, tribes, NGOs, universities and stakeholders within a geographically defined area. They inform resource management decisions to address national-scale stressors, including habitat fragmentation, genetic isolation, spread of invasive species, and water scarcity, all of which are accelerated by climate change. This dataset represents the geographic boundary of the Appalachian LCC.


map background search result map search result map Appalachian LCC Landscape Conservation Design Phase 1 Regional Cores Appalachian LCC Landscape Conservation Design Phase 1 East West Linkages Appalachian LCC Landscape Conservation Design Phase 1 Local Build-outs Appalachian LCC Landscape Conservation Design Phase 1 Local Cores Appalachian LCC Landscape Conservation Design Phase 1 Regional Linkages Brook Trout Highly Suitable Habitat with the Appalachian Landscape Conservation Cooperative Eastern Hellbender Suitable Habitat Appalachian LCC Landscape Conservation Design Marxan Hexagon Units Percent catchment under crop-rivers Density of upstream dams_rivers Amount of inflow stored in upstream dams-rivers Anthropogenic sediment yield Appalachian LCC Landscape Conservation Design Phase 1 Species Richness Appalachian LCC Boundary_applcc-shp-004 SILVIS Projected Change in Housing Density 2000-2030 Central Interior Highlands Calcareous Glade and Barrens American Community Survey Population Density per Square Mile 2013 CMIP5 Future Average Annual Precipitation Normal 2031-2060 CMIP5 Future Average Annual Temperature 2031-2060 CMIP5 Projected Change in Average Annual Temperature 2031-2060 Central Interior Highlands Calcareous Glade and Barrens Appalachian LCC Landscape Conservation Design Phase 1 East West Linkages Appalachian LCC Landscape Conservation Design Phase 1 Local Build-outs Appalachian LCC Landscape Conservation Design Phase 1 Regional Linkages American Community Survey Population Density per Square Mile 2013 CMIP5 Future Average Annual Precipitation Normal 2031-2060 CMIP5 Future Average Annual Temperature 2031-2060 CMIP5 Projected Change in Average Annual Temperature 2031-2060 Appalachian LCC Landscape Conservation Design Phase 1 Local Cores Appalachian LCC Landscape Conservation Design Phase 1 Regional Cores Appalachian LCC Boundary_applcc-shp-004 Appalachian LCC Landscape Conservation Design Marxan Hexagon Units Percent catchment under crop-rivers Density of upstream dams_rivers Amount of inflow stored in upstream dams-rivers Anthropogenic sediment yield SILVIS Projected Change in Housing Density 2000-2030 Eastern Hellbender Suitable Habitat Brook Trout Highly Suitable Habitat with the Appalachian Landscape Conservation Cooperative Appalachian LCC Landscape Conservation Design Phase 1 Species Richness