Skip to main content
Advanced Search

Filters: Contacts: Yu-Fen Huang (X)

3 results (136ms)   

View Results as: JSON ATOM CSV
Abstract (from Journal of Hydrology): Flooding is a significant threat to life and property in Hawaiʻi. As climate warming continues to alter precipitation patterns and hydrological processes in the tropics, characterizing the shifting patterns in magnitude, seasonality, and location of floods would improve our understanding of the consequences and better prepare us for future flood events. In this study, 84 rain gauges and 111 crest gauges across five major Hawaiian Islands were analyzed from 1970 to 2005. We estimated trends in the annual maximum daily rainfall (RFmax) and the annual peak flow (PFmax) using the Mann-Kendall test and Senʻs slope. Subsequently, we examined the association between PFmax and rainfall....
Categories: Publication; Types: Citation
With increasing needs for understanding historic climatic events and assessing changes in extreme weather to support natural hazard planning and infrastructure design, it is vital to have an accurate long-term hourly rainfall dataset. In Hawaiʻi, annual, monthly, and daily gauge data have been well-compiled and are accessible. Here, we compiled hourly rainfall data from both gauges and radars. We arranged the metadata from various data sources, acquired data, and applied quality control to each gauge dataset. In addition, we compiled and provided hourly radar rainfall, and filtered out areas with low confidence (larger error). This paper provides (1) a summary of available hourly data from various observation networks,...
Categories: Publication; Types: Citation
Gridded monthly rainfall estimates can be used for a number of research applications, including hydrologic modeling and weather forecasting. Automated interpolation algorithms, such as the “autoKrige” function in R, can produce gridded rainfall estimates that validate well but produce unrealistic spatial patterns. In this work, an optimized geostatistical kriging approach is used to interpolate relative rainfall anomalies, which are then combined with long-term means to develop the gridded estimates. The optimization consists of the following: 1) determining the most appropriate offset (constant) to use when log-transforming data; 2) eliminating poor quality data prior to interpolation; 3) detecting erroneous maps...
Categories: Publication; Types: Citation