Skip to main content
Advanced Search

Filters: Contacts: Lee Hannah (X)

8 results (98ms)   

View Results as: JSON ATOM CSV
Seedling establishment is a critical step that may ultimately govern tree species’ distribution shifts under environmental change. Annual variation in the location of seed rain and microclimates results in transient “windows of opportunity” for tree seedling establishment across the landscape. These establishment windows vary at fine spatiotemporal scales that are not considered in most assessments of climate change impacts on tree species range dynamics and habitat displacement. We integrate field seedling establishment trials conducted in the southern Sierra Nevada and western Tehachapi Mountains of southern California with spatially downscaled grids of modeled water-year climatic water deficit (CWDwy) and mean...
Categories: Publication; Types: Citation; Tags: Ecosphere
As natural resource management agencies and conservation organizations seek guidance on responding to climate change, myriad potential actions and strategies have been proposed for increasing the long-term viability of some attributes of natural systems. Managers need practical tools for selecting among these actions and strategies to develop a tailored management approach for specific targets at a given location. We developed and present one such tool, the participatory Adaptation for Conservation Targets (ACT) framework, which considers the effects of climate change in the development of management actions for particular species, ecosystems and ecological functions. Our framework is based on the premise that effective...
Categories: Publication; Types: Citation; Tags: Environmental Management
Balancing society’s competing needs of development and conservation requires careful consideration of tradeoffs. Renewable energy development and biodiversity conservation are often considered beneficial environmental goals. The direct footprint and disturbance of renewable energy, however, can displace species’ habitat and negatively impact populations and natural communities if sited without ecological consideration. Offsets have emerged as a potentially useful tool to mitigate residual impacts after trying to avoid, minimize, or restore affected sites. Yet the problem of efficiently designing a set of offset sites becomes increasingly complex where many species or many sites are involved. Spatial conservation...
Categories: Publication; Types: Citation; Tags: PLoS ONE
Climate impact models are often implemented at horizontal resolutions (“scales”) too coarse to be readily applied in local impact assessments. However, recent advancements in fine-scale modeling are allowing the creation of impact models that can be applied to landscape-scale adaptation planning. Here, we illustrate the use of fine-scale impact models for landscape-scale adaptation planning of pollination services for six sites in Central America. The strategies include the identification of (1) potential reservoir areas that may retain bee diversity and serve as a source of recolonization after climate shocks such as droughts; and (2) potential restoration areas, where improving forest cover is likely to lead to...
Categories: Publication; Types: Citation; Tags: Climatic Change
This project developed analytical approaches, tools and geospatial data to support conservation planning for renewable energy development in the California deserts. Research focused on geographical analysis to avoid, minimize and mitigate the cumulative biological effects of utility-scale solar energy development. A hierarchical logic model was created to map the compatibility of new solar energy projects with current biological conservation values. The research indicated that the extent of compatible areas is much greater than the estimated land area required to achieve 2040 greenhouse gas reduction goals. Species distribution models were produced for 65 animal and plant species that were of potential conservation...
Categories: Publication; Types: Citation
Context Predicting climate-driven species’ range shifts depends substantially on species’ exposure to climate change. Mountain landscapes contain a wide range of topoclimates and soil characteristics that are thought to mediate range shifts and buffer species’ exposure. Quantifying fine-scale patterns of exposure across mountainous terrain is a key step in understanding vulnerability of species to regional climate change. Objectives We demonstrated a transferable, flexible approach for mapping climate change exposure in a moisture-limited, mountainous California landscape across 4 climate change projections under phase 5 of the Coupled Model Intercomparison Project (CMIP5) for mid-(2040–2069) and end-of-century...
Categories: Publication; Types: Citation; Tags: Landscape Ecology
Recent studies suggest that species distribution models (SDMs) based on fine‐scale climate data may provide markedly different estimates of climate‐change impacts than coarse‐scale models. However, these studies disagree in their conclusions of how scale influences projected species distributions. In rugged terrain, coarse‐scale climate grids may not capture topographically controlled climate variation at the scale that constitutes microhabitat or refugia for some species. Although finer scale data are therefore considered to better reflect climatic conditions experienced by species, there have been few formal analyses of how modeled distributions differ with scale. We modeled distributions for 52 plant species...
Categories: Publication; Types: Citation; Tags: Global Change Biology