Filters: Contacts: Fred W. Allendorf (X)
16 results (530ms)
Filters
Date Range
Extensions Types Contacts Categories Tag Types
|
![]() Hybridization with introduced rainbow trout threatens most native westslope cutthroat trout populations. Understanding the genetic effects of hybridization and introgression requires a large set of high-throughput, diagnostic genetic markers to inform conservation and management. Recently, we identified several thousand candidate single-nucleotide polymorphism (SNP) markers based on RAD sequencing of 11 westslope cutthroat trout and 13 rainbow trout individuals. Here, we used flanking sequence for 56 of these candidate SNP markers to design high-throughput genotyping assays. We validated the assays on a total of 92 individuals from 22 populations and seven hatchery strains. Forty-six assays (82%) amplified consistently...
Abstract (from http://www.nature.com/nclimate/journal/vaop/ncurrent/full/nclimate2252.html): Climate change will decrease worldwide biodiversity through a number of potential pathways1, including invasive hybridization2 (cross-breeding between invasive and native species). How climate warming influences the spread of hybridization and loss of native genomes poses difficult ecological and evolutionary questions with little empirical information to guide conservation management decisions3. Here we combine long-term genetic monitoring data with high-resolution climate and stream temperature predictions to evaluate how recent climate warming has influenced the spatio-temporal spread of human-mediated hybridization between...
Categories: Publication;
Types: Citation;
Tags: Fish,
Northwest CASC,
Rivers, Streams and Lakes,
Water, Coasts and Ice,
Wildlife and Plants,
![]() Evolutionary and ecological consequences of hybridization between native and invasive species are notoriously complicated because patterns of selection acting on non-native alleles can vary throughout the genome and across environments. Rapid advances in genomics now make it feasible to assess locus-specific and genome-wide patterns of natural selection acting on invasive introgression within and among natural populations occupying diverse environments. We quantified genome-wide patterns of admixture across multiple independent hybrid zones of native westslope cutthroat trout and invasive rainbow trout, the world's most widely introduced fish, by genotyping 339 individuals from 21 populations using 9380 species-diagnostic...
Categories: Publication;
Types: Citation;
Tags: Proceedings of the Royal Society B: Biological Sciences
![]() Radio telemetry was used to identify and map sockeye salmon spawning habitats in glacially influenced Lake Clark, Kvichak River watershed, Alaska. Two hundred eighty-two adult sockeye salmon were radio tagged and tracked to spawning grounds. Thirty-five spawning areas were identified, including 18 previously unidentified. Comparison of radio telemetry data with past aerial population surveys indicate sockeye salmon spawning habitat use and distribution in Lake Clark was underestimated, likely due to poor visibility associated with glacial habitats. Although glacially turbid waters are not considered suitable incubation environments because fine sediments can suffocate embryos, more than 60% of radio tagged fish...
Categories: Publication;
Types: Citation
Abstract (from http://rspb.royalsocietypublishing.org/content/282/1799/20142454): Hybridization between native and non-native species has serious biological consequences, but our understanding of how dispersal and selection interact to influence invasive hybridization is limited. Here, we document the spread of genetic introgression between a native ( Oncorhynchus clarkii) and invasive ( Oncorhynchus mykiss) trout, and identify the mechanisms influencing genetic admixture. In two populations inhabiting contrasting environments, non-native admixture increased rapidly from 1984 to 2007 and was driven by surprisingly consistent processes. Individual admixture was related to two phenotypic traits associated with fitness:...
Categories: Publication;
Types: Citation;
Tags: Fish,
National CASC,
Wildlife and Plants,
dispersal,
fitness,
![]() The interplay of ecology and evolution has been a rich area of research for decades. A surge of interest in this area was catalyzed by the observation that evolution by natural selection can operate at the same contemporary timescales as ecological dynamics. Specifically, recent eco-evolutionary research focuses on how rapid adaptation influences ecology, and vice versa. Evolution by non-adaptive forces also occurs quickly, with ecological consequences, but understanding the full scope of ecology–evolution (eco–evo) interactions requires explicitly addressing population-level processes – genetic and demographic. We show the strong ecological effects of non-adaptive evolutionary forces and, more broadly, the value...
![]() Hybridization between native and non-native species has serious biological consequences, but our understanding of how dispersal and selection interact to influence invasive hybridization is limited. Here, we document the spread of genetic introgression between a native (Oncorhynchus clarkii) and invasive (Oncorhynchus mykiss) trout, and identify the mechanisms influencing genetic admixture. In two populations inhabiting contrasting environments, non-native admixture increased rapidly from 1984 to 2007 and was driven by surprisingly consistent processes. Individual admixture was related to two phenotypic traits associated with fitness: size at spawning and age of juvenile emigration. Fish with higher non-native admixture...
![]() We examined spatial and temporal patterns of hybridization between native westslope cutthroat trout, Oncorhynchus clarki lewisi, and nonnative rainbow trout, O. mykiss, in streams of the Flathead River system in Montana, U.S.A. We detected hybridization in 24 of 42 sites sampled from 1998 to 2001. We found new Oncorhynchus mykiss introgression in seven of 11 sample populations that were determined to be nonhybridized in 1984. Patterns of spatial autocorrelation and linkage disequilibrium indicated that hybridization is spreading among sites and is advancing primarily via post-F1 hybrids. Although hybridized populations were distributed widely throughout the study area, the genetic contribution from O. mykiss decreased...
![]() Genetic bottleneck effects can reduce genetic variation, persistence probability, and evolutionary potential of populations. Previous microsatellite analysis suggested a bottleneck associated with a common founding of sock-eye salmon Oncorhynchus nerka populations of Lake Clark, Alaska, about 100 to 400 generations ago. The common foundingevent occurred after the last glacial recession and resulted in reduced allelic diversity and strong divergence of Lake Clarksockeye salmon relative to neighboring Six Mile Lake and LakeIliamna populations. Here we used two additional genetic marker types (allozymes and mtDNA) to examine these patterns further. Allozyme and mtDNA results were congruent with the microsatellite data...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1111/gcb.13681/full): Hybridization between invasive and native species, a significant threat to worldwide biodiversity, is predicted to increase due to climate-induced expansions of invasive species. Long-term research and monitoring are crucial for understanding the ecological and evolutionary processes that modulate the effects of invasive species. Using a large, multidecade genetics dataset (N = 582 sites, 12,878 individuals) with high-resolution climate predictions and extensive stocking records, we evaluate the spatiotemporal dynamics of hybridization between native cutthroat trout and invasive rainbow trout, the world's most widely introduced invasive fish,...
Many of the World’s rivers are influenced by large dams (>15 m high) most of which have fragmented formerly continuous habitats, and significantly altered fish passage, natural flow, temperature, and sediment fluxes (Nilsson and others, 2005; Arthington, 2012; Liermann and others, 2012). In the Pacific Northwest, dams on major rivers have been a major focus for fishery managers, primarily in regard to passage of anadromous salmonids (principally Pacific salmon and steelhead trout [Oncorhynchus mykiss], for example, Ferguson and others, 2011), but more recently other species, such as Pacific lamprey (Entosphenus tridentatus) and resident (non-anadromous) salmonids, are receiving more attention (Neraas and Spruell,...
![]() Climate change will decrease worldwide biodiversity through a number of potential pathways, including invasive hybridization (cross-breeding between invasive and native species). How climate warming influences the spread of hybridization and loss of native genomes poses difficult ecological and evolutionary questions with little empirical information to guide conservation management decisions. Here we combine long-term genetic monitoring data with high-resolution climate and stream temperature predictions to evaluate how recent climate warming has influenced the spatio-temporal spread of human-mediated hybridization between threatened native westslope cutthroat trout (Oncorhynchus clarkii lewisi) and non-native...
![]() Hybridization between invasive and native species, a significant threat to worldwide biodiversity, is predicted to increase due to climate-induced expansions of invasive species. Long-term research and monitoring are crucial for understanding the ecological and evolutionary processes that modulate the effects of invasive species. Using a large, multi-decade genetics dataset (N = 582 sites, 12,878 individuals) with high-resolution climate predictions and extensive stocking records, we evaluate the spatiotemporal dynamics of hybridization between native cutthroat trout and invasive rainbow trout, the world’s most widely introduced invasive fish, across the northern Rocky Mountains of the United States. Historical...
![]() Rapid and inexpensive methods for genomewide single nucleotide polymorphism (SNP) discovery and genotyping are urgently needed for population management and conservation. In hybridized populations, genomic techniques that can identify and genotype thousands of species-diagnostic markers would allow precise estimates of population- and individual-level admixture as well as identification of 'super invasive' alleles, which show elevated rates of introgression above the genomewide background (likely due to natural selection). Techniques like restriction-site-associated DNA (RAD) sequencing can discover and genotype large numbers of SNPs, but they have been limited by the length of continuous sequence data they produce...
![]() Invasive hybridization is causing loss of biodiversity worldwide. The spread of such introgression can occur even when hybrids have reduced Darwinian fitness, which decreases the frequency of hybrids due to low survival or reproduction through time. This paradox can be partially explained by spatial sorting, where genotypes associated with dispersal increase in frequency at the edge of expansion, fueling further expansion and allowing invasive hybrids to increase in frequency through space rather than time. Furthermore, because all progeny of a hybrid will be hybrids (i.e., will possess genes from both parental taxa), nonnative admixture in invaded populations can increase even when most hybrid progeny do not survive....
![]() We appreciate the comments of Young et al. (2017) on our recent paper (Muhlfeld et al., 2017) concerning spatiotemporal dynamics of hybridization between native westslope cutthroat trout (Oncorhynchus clarkii lewisi; WCT) and introduced coastal rainbow trout (Oncorhynchus mykiss irideus; RBT). Nevertheless, we believe there is no evidence for “ecological segregation” protecting WCT from hybridization with invasive RBT. Here we consider their three major arguments for ecological segregation and find their conclusions invalid.
|