Filters: Contacts: Andrew Hoell (X)
19 results (86ms)
Filters
Date Range
Extensions Types Contacts
Categories Tag Types Tag Schemes |
![]() Southwestern Asia, defined here as the domain bounded by 20°–40°N and 40°–70°E, which includes the nations of Iraq, Iran, Afghanistan, and Pakistan, is a water-stressed and semiarid region that receives roughly 75% of its annual rainfall during November–April. The November–April climate of southwestern Asia is strongly influenced by tropical Indo-Pacific variability on intraseasonal and interannual time scales, much of which can be attributed to sea surface temperature (SST) variations. The influences of lower-frequency SST variability on southwestern Asia climate during November–April Pacific decadal SST (PDSST) variability and the long-term trend in SST (LTSST) is examined. The U.S. Climate Variability and Predictability...
![]() Since 1980, the number of undernourished people in eastern and southern Africa has more than doubled. Rural development stalled and rural poverty expanded during the 1990s. Population growth remains very high, and declining per-capita agricultural capacity retards progress toward Millennium Development goals. Analyses of in situ station data and satellite observations of precipitation have identified another problematic trend: main growing-season rainfall receipts have diminished by ???15% in food-insecure countries clustered along the western rim of the Indian Ocean. Occurring during the main growing seasons in poor countries dependent on rain-fed agriculture, these declines are societally dangerous. Will they...
Categories: Publication;
Types: Citation;
Tags: Proceedings of the National Academy of Sciences of the United States of Americ
![]() The dynamics and recent and possible future changes of the June–September rainfall associated with the North American Monsoon (NAM) are reviewed in this chapter. Our analysis as well as previous analyses of the trend in June–September precipitation from 1948 until 2010 indicate significant precipitation increases over New Mexico and the core NAM region, and significant precipitation decreases over southwest Mexico. The trends in June–September precipitation have been forced by anomalous cyclonic circulation centered at 15°N latitude over the eastern Pacific Ocean. The anomalous cyclonic circulation is responsible for changes in the flux of moisture and the divergence of moisture flux within the core NAM region....
Categories: Publication;
Types: Citation
![]() The Climate Hazards group Infrared Precipitation with Stations (CHIRPS) dataset builds on previous approaches to ‘smart’ interpolation techniques and high resolution, long period of record precipitation estimates based on infrared Cold Cloud Duration (CCD) observations. The algorithm i) is built around a 0.05° climatology that incorporates satellite information to represent sparsely gauged locations, ii) incorporates daily, pentadal, and monthly 1981-present 0.05° CCD-based precipitation estimates, iii) blends station data to produce a preliminary information product with a latency of about 2 days and a final product with an average latency of about 3 weeks, and iv) uses a novel blending procedure incorporating...
![]() El Nino - Southern Oscillation (ENSO) events are accompanied by an anomalous zonal sea surface temperature (SST) gradient over the west Pacific Ocean, defined hereafter as the west Pacific SST gradient (WPG). While the direction of the WPG follows ENSO cycles, the magnitude of the gradient varies considerably between individual El Nino and La Nina events. In this study, El Nino and La Nina events are grouped according to the magnitude of the WPG, and tropical SST, circulations and precipitation are examined in addition to an analysis of Northern Hemisphere wintertime circulation and precipitation for the period of 1948-2011. The WPG is defined as the difference between area-averaged SST over the central Pacific...
Categories: Publication;
Types: Citation
![]() Northern Hemisphere circulations differ considerably between individual El Niño-Southern Oscillation events due to internal atmospheric variability and variation in the zonal location of sea surface temperature forcing over the tropical Pacific Ocean. This study examines the similarities between recent Northern Hemisphere droughts associated with La Niña events and anomalously warm tropical west Pacific sea surface temperatures during 1988–1989, 1998–2000, 2007–2008 and 2010–2011 in terms of the hemispheric-scale circulations and the regional forcing of precipitation over North America and Asia during the cold season of November through April. The continental precipitation reductions associated with recent central...
![]() The El Niño–Southern Oscillation (ENSO) is the leading mode of interannual variability, with global impacts on weather and climate that have seasonal predictability. Research on the link between interannual ENSO variability and the leading mode of intraseasonal variability, the Madden–Julian oscillation (MJO), has focused mainly on the role of MJO initiating or terminating ENSO. We use observational analysis and modeling to show that the MJO has an important simultaneous link to ENSO: strong MJO activity significantly weakens the atmospheric branch of ENSO. For weak MJO conditions relative to strong MJO conditions, the average magnitude of ENSO-associated tropical precipitation anomalies increases by 63%, and the...
![]() In this study we implement and evaluate a simple 'hybrid' forecast approach that uses constructed analogs (CA) to improve the National Multi-Model Ensemble's (NMME) March–April–May (MAM) precipitation forecasts over equatorial eastern Africa (hereafter referred to as EA, 2°S to 8°N and 36°E to 46°E). Due to recent declines in MAM rainfall, increases in population, land degradation, and limited technological advances, this region has become a recent epicenter of food insecurity. Timely and skillful precipitation forecasts for EA could help decision makers better manage their limited resources, mitigate socio-economic losses, and potentially save human lives. The 'hybrid approach' described in this study uses the...
![]() The differences in tropical Pacific sea surface temperature (SST) expressions of El Niño-Southern Oscillation (ENSO) events of the same phase have been linked with different global atmospheric circulation patterns. This study examines the dynamical forcing of precipitation during October–December (OND) and March–May (MAM) over East Africa and during December–March (DJFM) over Central-Southwest Asia for 1950–2010 associated with four tropical Pacific SST patterns characteristic of La Niña events, the cold phase of ENSO. The self-organizing map method along with a statistical distinguishability test was used to isolate La Niña events, and seasonal precipitation forcing was investigated in terms of the tropical overturning...
![]() The socioeconomic difficulties of southwest Asia, defined as the area bound by the domain 25°N–40°N and 40°E–70°E, are exacerbated by extreme precipitation deficits during the November–April rainy season. The precipitation deficits during many southwest Asia droughts have been examined in terms of the forcing by climate variability originating over the Pacific Ocean as a result of the El Niño–Southern Oscillation (ENSO), Pacific decadal variability (PDV), and the long-term warming of Pacific (LT) sea surface temperatures (SST). Here we examine how the most extreme November–April southwest Asia droughts relate to global SSTs and the associated large-scale atmospheric circulation anomalies and analyze the specific...
Categories: Publication;
Types: Citation
![]() This chapter briefly reviews the complex climatological cycle of the East African monsoon system, paying special attention to its connection to the larger Indo-Pacific-Asian monsoon cycle. We examine the seasonal monsoon cycle, and briefly explore recent circulation changes. The spatial footprint of our analysis corresponds with the “Greater Horn of Africa” (GHA) region, extending from Tanzania in the south to Yemen and Sudan in the north. During boreal winter, when northeast trade winds flow across the northwest Indian Ocean and the equatorial moisture transports over the Indian Ocean exhibit strong westerly mean flows over the equatorial Indian Ocean, East African precipitation is limited to a few highland areas....
Categories: Publication;
Types: Citation
![]() Southwest Asia, deemed as the region containing the countries of Afghanistan, Iran, Iraq and Pakistan, is water scarce and receives nearly 75% of its annual rainfall during8 the boreal cold season of November-April. The forcing of Southwest Asia precipitation has been previously examined for the entire boreal cold season from the perspective of climate variability originating over the Atlantic and tropical Indo-Pacific Oceans. Here, we examine the inter-monthly differences in precipitation variability over Southwest Asia and the atmospheric conditions directly responsible in forcing monthly November-April precipitation. Seasonally averaged November-April precipitation over Southwest Asia is significantly correlated...
![]() A wide range of sea surface temperature (SST) expressions have been observed during the El Niño–Southern Oscillation events of 1950–2010, which have occurred simultaneously with different global atmospheric circulations. This study examines the atmospheric circulation and precipitation during December–March 1950–2010 over the African Continent south of 15∘S, a region hereafter known as Southern Africa, associated with eight tropical Pacific SST expressions characteristic of El Niño and La Niña events. The self-organizing map method along with a statistical distinguishability test was used to isolate the SST expressions of El Niño and La Niña. The seasonal precipitation forcing over Southern Africa associated with...
![]() In southern Ethiopia, Eastern Kenya, and southern Somalia poor boreal spring rains in 1999, 2000, 2004, 2007, 2008, 2009 and 2011 contributed to severe food insecurity and high levels of malnutrition. Predicting rainfall deficits in this region on seasonal and decadal time frames can help decision makers support disaster risk reduction while guiding climate-smart adaptation and agricultural development. Building on recent research that links more frequent droughts to a stronger Walker Circulation, warming in the Indo-Pacific warm pool, and an increased western Pacific sea surface temperature (SST) gradient, we explore the dominant modes of East African rainfall variability, links between these modes and sea surface...
![]() While the SST trend mode has resulted in large SST increases that appear associated with an equatorial precipitation dipole response contrasting increases over the western Pacific and decreases over the central Pacific, the location of most of this warming is to the west of the key sensitivity areas identified in our CMIP5 composite. Removing this warming did not increase the CAM5 precipitation over California in a statistically significant manner, thus there appears to be little evidence that this long term warming trend contributed substantially to the 2013 and 2014 drought events. This result appears consistent with the lack of a long term downward trend in California precipitation. California precipitation does...
![]() Rainfall over eastern Africa (10°S–10°N; 35°E–50°E) is bimodal, with seasonal maxima during the "long rains" of March–April–May (MAM) and the "short rains" of October–November–December (OND). Below average precipitation during consecutive long and short rains seasons over eastern Africa can have devastating long-term impacts on water availability and agriculture. Here, we examine the forcing of drought during consecutive long and short rains seasons over eastern Africa by Indo-Pacific sea surface temperatures (SSTs). The forcing of eastern Africa precipitation and circulation by SSTs is tested using ten ensemble simulations of a global weather forecast model forced by 1950–2010 observed global SSTs. Since the 1980s,...
![]() Here we analyze empirical orthogonal functions (EOFs) of observations and a 30 member ensemble of Community Earth System Model version 1 (CESM1) simulations, and suggest that precipitation declines in the Greater Horn of Africa (GHA) and the northern Middle East/Southwestern Asia (NME/SWE: Iran, Iraq, Kuwait, Syria, Saudi Arabia north of 25°N, Israel, Jordan, and Lebanon) may be interpreted as an interaction between La Niña-like decadal variability and the West Pacific Warming Mode (WPWM). While they exhibit different SST patterns, warming of the Pacific cold tongue (ENSO) and warming of the western Pacific (WPWM) produce similar warm pool diabatic forcing, Walker circulation anomalies, and terrestrial teleconnections....
Categories: Publication;
Types: Citation
![]() Anthropogenic warming contributed to the 2014 East African drought by increasing East African and west Pacific temperatures, and increasing the gradient between standardized western and central Pacific SST causing reduced rainfall, evapotranspiration, and soil moisture.
|