Skip to main content
Advanced Search

Filters: Contacts: {oldPartyId:7969} (X)

2 results (28ms)   

View Results as: JSON ATOM CSV
Abstract (from http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0138759): Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0–58.0°N latitude by 136.6–103.0°W longitude). LPJ is a...
thumbnail
This data release includes climatic variables and associated descriptive material created for the purpose of assessing uncertainties associated with climatic estimates based on vegetation assemblages (Thompson and others, 2021). The data are from the interior of the western United States, including all of Arizona, and portions of California, Colorado, Nevada, New Mexico, Texas, and Utah. The data are observed, interpolated, and estimated values for the mean temperature of the coldest month (MTCO, degrees C), mean temperature of the warmest month (MTWA, degrees C), and mean annual total precipitation (MAP, mm).