Skip to main content
Advanced Search

Filters: Contacts: {oldPartyId:66007} (X)

7 results (8ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Climate change may facilitate the expansion of non-native invasive species (NIS) in aquatic and terrestrial systems. However, empirical evidence remains scarce and poorly synthesized at scales necessary for effective management. We conducted a literature synthesis to assess the state of research on the observed and predicted effects of climate change on a suite of 398 aquatic and terrestrial NIS now present in or a major threat to aquatic and terrestrial ecosystems of the Pacific Northwest (PNW), USA and British Columbia. Surprisingly, very few studies (n = 15) have investigated the observed effects of climate change on the distribution, abundance, spread, or impact of the focal NIS, with only five studies focusing...
thumbnail
Dataset includes individual-specific genetic data describing the extent of hybridization between Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri) and rainbow trout (O. mykiss) in Wyoming.
Abstract (from http://onlinelibrary.wiley.com/doi/10.1111/gcb.13681/full): Hybridization between invasive and native species, a significant threat to worldwide biodiversity, is predicted to increase due to climate-induced expansions of invasive species. Long-term research and monitoring are crucial for understanding the ecological and evolutionary processes that modulate the effects of invasive species. Using a large, multidecade genetics dataset (N = 582 sites, 12,878 individuals) with high-resolution climate predictions and extensive stocking records, we evaluate the spatiotemporal dynamics of hybridization between native cutthroat trout and invasive rainbow trout, the world's most widely introduced invasive fish,...
Abstract (from http://afs.tandfonline.com/doi/abs/10.1080/03632415.2016.1186016): Climate is a critical driver of many fish populations, assemblages, and aquatic communities. However, direct observational studies of climate change impacts on North American inland fishes are rare. In this synthesis, we (1) summarize climate trends that may influence North American inland fish populations and assemblages, (2) compile 31 peer-reviewed studies of documented climate change effects on North American inland fish populations and assemblages, and (3) highlight four case studies representing a variety of observed responses ranging from warmwater systems in the southwestern and southeastern United States to coldwater systems...
Climate change and invasive species are major threats to native biodiversity, but few studies have examined their combined effects at large spatial and temporal scales. Using 21,917 surveys collected over 30 years, we quantified the impacts of climate change on the past and future distributions of five interacting native and invasive trout species throughout the northern Rocky Mountains, USA. We found that the occupancy of native bull trout and cutthroat trout declined by 18% and 6%, respectively, from 1993 to 2018 and was predicted to decrease by an additional 39% and 16% by 2080. However, reasons for the occupancy reductions differed markedly across species; increasing water temperature and decreasing streamflow...
Categories: Publication; Types: Citation
Abstract (from http://www.sciencedirect.com/science/article/pii/S0169534715000075): Extrinsic factors influencing evolutionary processes are often categorically lumped into interactions that are environmentally (e.g., climate, landscape) or community-driven, with little consideration of the overlap or influence of one on the other. However, genomic variation is strongly influenced by complex and dynamic interactions between environmental and community effects. Failure to consider both effects on evolutionary dynamics simultaneously can lead to incomplete, spurious, or erroneous conclusions about the mechanisms driving genomic variation. We highlight the need for a landscape community genomics (LCG) framework to...


    map background search result map search result map Individual specific hybridization data from the upper Snake River, Wyoming from 2014 Individual specific hybridization data from the upper Snake River, Wyoming from 2014