Estimating Phosphorus Loss in Runoff from Manure and Fertilizer for a Phosphorus Loss Quantification Tool
Dates
Year
2008
Citation
Vadas, P. A., Good, L. W., Moore, P. A., and Widman, N., 2008, Estimating Phosphorus Loss in Runoff from Manure and Fertilizer for a Phosphorus Loss Quantification Tool: J. Environ. Qual., v. 38, no. 4, p. 1645-1653.
Summary
Nonpoint-source pollution of fresh waters by P is a concern because it contributes to accelerated eutrophication. Given the state of the science concerning agricultural P transport, a simple tool to quantify annual, field-scale P loss is a realistic goal. We developed new methods to predict annual dissolved P loss in runoff from surface-applied manures and fertilizers and validated the methods with data from 21 published field studies. We incorporated these manure and fertilizer P runoff loss methods into an annual, field-scale P loss quantification tool that estimates dissolved and particulate P loss in runoff from soil, manure, fertilizer, and eroded sediment. We validated the P loss tool using independent data from 28 studies that [...]
Summary
Nonpoint-source pollution of fresh waters by P is a concern because it contributes to accelerated eutrophication. Given the state of the science concerning agricultural P transport, a simple tool to quantify annual, field-scale P loss is a realistic goal. We developed new methods to predict annual dissolved P loss in runoff from surface-applied manures and fertilizers and validated the methods with data from 21 published field studies. We incorporated these manure and fertilizer P runoff loss methods into an annual, field-scale P loss quantification tool that estimates dissolved and particulate P loss in runoff from soil, manure, fertilizer, and eroded sediment. We validated the P loss tool using independent data from 28 studies that monitored P loss in runoff from a variety of agricultural land uses for at least 1 yr. Results demonstrated (i) that our new methods to estimate P loss from surface manure and fertilizer are an improvement over methods used in existing Indexes, and (ii) that it was possible to reliably quantify annual dissolved, sediment, and total P loss in runoff using relatively simple methods and readily available inputs. Thus, a P loss quantification tool that does not require greater degrees of complexity or input data than existing P Indexes could accurately predict P loss across a variety of management and fertilization practices, soil types, climates, and geographic locations. However, estimates of runoff and erosion are still needed that are accurate to a level appropriate for the intended use of the quantification tool.