Skip to main content

Yu-Fen Huang

Abstract (from Journal of Hydrology): Flooding is a significant threat to life and property in Hawaiʻi. As climate warming continues to alter precipitation patterns and hydrological processes in the tropics, characterizing the shifting patterns in magnitude, seasonality, and location of floods would improve our understanding of the consequences and better prepare us for future flood events. In this study, 84 rain gauges and 111 crest gauges across five major Hawaiian Islands were analyzed from 1970 to 2005. We estimated trends in the annual maximum daily rainfall (RFmax) and the annual peak flow (PFmax) using the Mann-Kendall test and Senʻs slope. Subsequently, we examined the association between PFmax and rainfall....
Categories: Publication; Types: Citation
thumbnail
Information on flood inundation extent is important for understanding societal exposure, water storage volumes, flood wave attenuation, future flood hazard, and other variables. A number of organizations now provide flood inundation maps based on satellite remote sensing. These data products can efficiently and accurately provide the areal extent of a flood event, but do not provide floodwater depth, an important attribute for first responders and damage assessment. Here we present a new methodology and a GIS-based tool, the Floodwater Depth Estimation Tool (FwDET), for estimating floodwater depth based solely on an inundation map and a digital elevation model (DEM). We compare the FwDET results against water depth...
Gridded monthly rainfall estimates can be used for a number of research applications, including hydrologic modeling and weather forecasting. Automated interpolation algorithms, such as the “autoKrige” function in R, can produce gridded rainfall estimates that validate well but produce unrealistic spatial patterns. In this work, an optimized geostatistical kriging approach is used to interpolate relative rainfall anomalies, which are then combined with long-term means to develop the gridded estimates. The optimization consists of the following: 1) determining the most appropriate offset (constant) to use when log-transforming data; 2) eliminating poor quality data prior to interpolation; 3) detecting erroneous maps...
Categories: Publication; Types: Citation
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.