Skip to main content

Timothy J Randle

thumbnail
Streamgage levels on the Elwha River were measured from 2011 to 2016. These measurements show the height of the river's water surface, both in meters relative to the stream bed, as well as in meters relative to vertical geographic coordinates. Measurements were collected using a Global Water WL16 battery-operated vented water level logger in a hardened casing. The instrument was installed on October 17, 2011 on the left bank of the Elwha River at a power line crossing above the Elwha Surface Water Intake (at approximately river kilometer 5.6), which is downstream of the (now historical) Elwha Dam site. Data collection ended May 12, 2016. The data were collected as part of a study investigating responses of the Elwha...
thumbnail
This dataset presents elevation measurements of two dams on the Elwha River, Washington, during their removal processes from 2008 to 2013. Elevation measurements of the Elwha Dam were taken from October 2008 to March 2012. Elevation measurements of the Glines Canyon dam, which was further upstream than the Elwha Dam, were taken from October 2010 to October 2013. The measurements were taken by the U.S. Bureau of Reclamation as part of a study investigating the river channel's morphological responses to dam removal.
thumbnail
A substantial increase in fluvial sediment supply relative to transport capacity causes complex, large-magnitude changes in river and floodplain morphology downstream. Although sedimentary and geomorphic responses to sediment pulses are a fundamental part of landscape evolution, few opportunities exist to quantify those processes over field scales.We investigated the downstream effects of sediment released during the largest dam removal in history, on the Elwha River, Washington, USA, by measuring changes in riverbed elevation and topography, bed sediment grain size, and channel planform as two dams were removed in stages over two years. As 10.5 million t (7.1 million m3) of sediment was released from two former...
Categories: Publication; Types: Citation
thumbnail
Sediment inputs to Lake Mills, on the Elwha River, Washington, were measured from 1927 to 2016. These measurements represent the annual total sediment load, in tonnes per year, that were input into Lake Mills and partially trapped by Glines Canyon dam. The sediment was allowed to erode and be transported down-river by the removal of the Glines Canyon and Elwha dams during 2011 to 2014. The measurements were taken as part of a study investigating the river channel's morphological responses to the removal of two large dams - the Elwha River and Glines Canyon dams.
thumbnail
Dam decommissioning is rapidly emerging as an important river restoration strategy in the U.S., with several major removals recently completed or in progress. But few studies have evaluated the far-reaching consequences of these significant environmental perturbations, especially those resulting from removals of large (>10-15 m tall) structures during the last decade. In particular, interactions between physical and ecological aspects of dam removal are poorly known. From recent work, however, observations are now available from several diverse settings nationwide to allow synthesis of key physical and ecological processes associated with dam removals, including fish and benthic community response, reservoir erosion,...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.