Skip to main content

Thomas R. Loveland

thumbnail
Quantification of global forest change has been lacking despite the recognized importance of forest ecosystem services. In this study, Earth observation satellite data were used to map global forest loss (2.3 million square kilometers) and gain (0.8 million square kilometers) from 2000 to 2012 at a spatial resolution of 30 meters. The tropics were the only climate domain to exhibit a trend, with forest loss increasing by 2101 square kilometers per year. Brazil’s well-documented reduction in deforestation was offset by increasing forest loss in Indonesia, Malaysia, Paraguay, Bolivia, Zambia, Angola, and elsewhere. Intensive forestry practiced within subtropical forests resulted in the highest rates of forest change...
Categories: Publication; Types: Citation; Tags: Science
thumbnail
Land-cover change in the conterminous United States was quantified by interpreting change from satellite imagery for a sample stratified by 84 ecoregions. Gross and net changes between 11 land-cover classes were estimated for 5 dates of Landsat imagery (1973, 1980, 1986, 1992, and 2000). An estimated 673,000 km2(8.6%) of the United States’ land area experienced a change in land cover at least one time during the study period. Forest cover experienced the largest net decline of any class with 97,000 km2 lost between 1973 and 2000. The large decline in forest cover was prominent in the two regions with the highest percent of overall change, the Marine West Coast Forests (24.5% of the region experienced a change in...
Categories: Publication; Types: Citation; Tags: Global Environmental Change
thumbnail
Land cover change is one of the key driving forces for ecosystem carbon (C) dynamics. We present an approach for using sequential remotely sensed land cover observations and a biogeochemical model to estimate contemporary and future ecosystem carbon trends. We applied the General Ensemble Biogeochemical Modelling System (GEMS) for the Laurentian Plains and Hills ecoregion in the northeastern United States for the period of 1975-2025. The land cover changes, especially forest stand-replacing events, were detected on 30 randomly located 10-km by 10-km sample blocks, and were assimilated by GEMS for biogeochemical simulations. In GEMS, each unique combination of major controlling variables (including land cover change...
Categories: Publication; Types: Citation; Tags: Ecological Modelling
thumbnail
Land use and land cover changes have complex linkages to climate variability and change, biophysical resources, and socioeconomic driving forces. To assess these land change dynamics and their causes in the Great Plains, we compare and contrast contemporary changes across 16 ecoregions using Landsat satellite data and statistical analysis. Large-area change analysis of agricultural regions is often hampered by change detection error and the tendency for land conversions to occur at the local-scale. To facilitate a regional-scale analysis, a statistical sampling design of randomly selected 10 km × 10 km blocks is used to efficiently identify the types and rates of land conversions for four time intervals between...
Categories: Publication; Types: Citation; Tags: Land Use Policy
thumbnail
Initiated in 1972, the Landsat program has provided a continuous record of earth observation for 35 years. The assemblage of Landsat spatial, spectral, and temporal resolutions, over a reasonably sized image extent, results in imagery that can be processed to represent land cover over large areas with an amount of spatial detail that is absolutely unique and indispensable for monitoring, management, and scientific activities. Recent technical problems with the two existing Landsat satellites, and delays in the development and launch of a successor, increase the likelihood that a gap in Landsat continuity may occur. In this communication, we identify the key features of the Landsat program that have resulted in the...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.