Skip to main content

Stark, John M

Shifts in plant community structure in shrub and grass-dominated ecosystems are occurring over large land areas in the western US. It is not clear what effect this vegetative change will have on rates of carbon and nitrogen cycling, and thus long-term ecosystem productivity. To study the effect of different plant species on the decomposability of soil organic substrates and rates of C- and N-cycling, we conducted laboratory incubations of soils from a 15-yr-old experimental plot where big sagebrush (Artemisia tridentata Nutt.) and crested wheatgrass (Agropyron desertorum [Fisch.] Schult.) plants had been planted in a grid pattern. Soil samples collected from beneath crested wheatgrass had significantly greater total...
Plant detritus is an important source of labile C that drives soil microbial growth and regulates the balance of N mineralization and immobilization. In semiarid ecosystems, timing of plant detrital inputs may be especially important in regulating microbial C and N cycling because of the relatively short window of time when moisture is available. Low soil moisture in early-summer may inhibit microbial colonization of recently released detritus, resulting in C-limitations to microbial growth, and this may explain the NO3? accumulation commonly observed in semiarid, arid, and Mediterranean ecosystems. We examined linkages between soil C availability and gross N cycling rates during summer in three common semiarid...
Soils that are physically disturbed are often reported to show net nitrification and NO3? loss. To investigate the response of soil N cycling rates to soil mixing, we assayed gross rates of mineralization, nitrification, NH4+ consumption, and NO3? consumption in a suite of soils from eleven woody plant communities in Oregon, New Mexico, and Utah. Results suggest that the common response of net NO3? flux from disturbed soils is not a straightforward response of increased gross nitrification, but instead may be due to the balance of several factors. While mineralization and NH4+ assimilation were higher in mixed than intact cores, NO3? consumption declined. Mean net nitrification was 0.12 mg N kg?1 d?1 in disturbed...
thumbnail
The exotic annual grass Bromus tectorum has replaced thousands of hectares of native perennial vegetation in semi-arid ecosystems of the western United States. Inorganic N availability and production were compared in soil from monodominant patches of Bromus tectorum, the perennial bunchgrass Elymus elymoides, and the shrub Artemisia tridentata, in Curlew Valley, a salt-desert shrub site in Northern Utah. Bromus-dominated soil had greater %N in the top 10 cm than Artemisia or Elymus-dominated soils. As determined by spring isotope-dilution assays, gross mineralization and nitrification rates were higher in Bromus-dominated than Artemisia-dominated soils, but gross rates of NH4+ and NO3- consumption were also higher....
The episodic nature of water availability in arid and semiarid ecosystems has significant consequences on belowground carbon and nutrient cycling. Pulsed water events directly control belowground processes through soil wet-dry cycles. Rapid soil microbial response to incident moisture availability often results in almost instantaneous C and N mineralization, followed by shifts in C/N of microbially available substrate, and an offset in the balance between nutrient immobilization and mineralization. Nitrogen inputs from biological soil crusts are also highly sensitive to pulsed rain events, and nitrogen losses, particularly gaseous losses due to denitrification and nitrate leaching, are tightly linked to pulses of...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.