Skip to main content

Rupp, T. Scott

thumbnail
Concerns about wildland fuel levels and a growing wildland-urban interface (WUI) have pushed wildland fire risk mitigation strategies to the forefront of fire management activities. Mechanical (e.g., shearblading) and manual (e.g., thinning) fuel treatments have become the preferred strategy of many fire managers and agencies. This Joint Fire Science Program funded project seeks to document and quantify mechanical and manual fuel treatment effects on fire behavior. Alaska's Federal and State fire management agencies have identified this 'data gap' as their most important fire science research need and priority. The Nenana Ridge Ruffed Grouse Project Area is 6,000 acres of typical interior Alaska boreal forest located...
thumbnail
This paper explores whether fundamental differences exist between urban and rural vulnerability to climate-induced changes in the fire regime of interior Alaska. We further examine how communities and fire managers have responded to these changes and what additional adaptations could be put in place. We engage a variety of social science methods, including demographic analysis, semi-structured interviews, surveys, workshops and observations of public meetings. This work is part of an interdisciplinary study of feedback and interactions between climate, vegetation, fire and human components of the Boreal forest social?ecological system of interior Alaska. We have learned that although urban and rural communities...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/hyp.9934/abstract): Adaptation planning in Alaska, as in other snowy parts of the world, will require snow projections, yet snow is a challenging variable to measure, simulate and downscale. Here we describe the construction and evaluation of 771-m-resolution gridded historical and statistically downscaled projections of snow/rain partitioning for the state of Alaska at decadal temporal resolution. The method developed here uses observational data to describe the relationship between average monthly temperature and the fraction of wet days in that month receiving snow, the snow-day fraction. Regionally and seasonally specific equations were developed to...
thumbnail
Characterizing how variation in forest landscape structure shapes patterns of natural disturbances and mediates interactions between multiple disturbances is critical for anticipating ecological consequences of climate change in high-latitude forest ecosystems. During the 1990s, a massive spruce bark beetle (Dendroctonus rufipennis) outbreak took place in boreal spruce forest on the Kenai Peninsula, Alaska allowing us to ask (1) How did the extent and duration of bark beetle outbreak differ between a homogenous landscape dominated by white spruce (Picea glauca), and a landscape in which white spruce and black spruce (Picea mariana) were intermixed? (2) How has the occurrence and duration of bark beetle outbreak...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.