Skip to main content

R. Blaine McCleskey

thumbnail
Explanations for the lack of acid geothermal springs in Tibet are inferred from a comprehensive hydrochemical comparison of Tibetan geothermal waters with those discharged from Yellowstone (USA) and two active volcanic areas, Nevado del Ruiz (Colombia) and Miravalles (Costa Rica) where acid springs are widely distributed and diversified in terms of geochemical characteristic and origin. For the hydrothermal areas investigated in this study, there appears to be a relationship between the depths of magma chambers and the occurrence of acid, chloride-rich springs formed via direct magmatic fluid absorption. Nevado del Ruiz and Miravalles with magma at or very close to the surface (less than 1–2 km) exhibit very acidic...
thumbnail
Water samples were collected approximately every two weeks during the spring of 2010 from the Level 1 portal of the Standard Mine and from two locations on Elk Creek. The objective of the sampling was to: (1) better define the expected range and timing of variations in pH and metal concentrations in Level 1 discharge and Elk Creek during spring runoff; and (2) further evaluate possible mechanisms controlling water quality during spring runoff. Samples were analyzed for major ions, selected trace elements, and stable isotopes of oxygen and hydrogen (oxygen-18 and deuterium). The Level 1 portal sample and one of the Elk Creek samples (EC-CELK1) were collected from the same locations as samples taken in the spring...
Categories: Publication; Types: Citation; Tags: Open-File Report
thumbnail
Copiapite-group minerals of the general formula AR4(SO4)6(OH)2·nH2O, where A is predominantly Mg, Fe2+, or 0.67Al3+, R is predominantly Fe3+, and n is typically 20, are among several secondary hydrous Fe sulfates occurring in the inactive mine workings of the massive sulfide deposit at Iron Mountain, CA, a USEPA Superfund site that produces extremely acidic drainage. Samples of copiapite-group minerals, some with coexisting water, were collected from the Richmond mine. Approximately 200 mL of brownish pore water with a pH of −0.9 were extracted through centrifugation from a 10-L sample of moist copiapite-group minerals taken from pyritic muck piles. The pore water is extremely rich in ferric iron (Fe3+=149 g L−1,...
Categories: Publication; Types: Citation; Tags: Chemical Geology
thumbnail
Water analyses are reported for ground and surface waters collected at 33 sites on and near Ester Dome, Fairbanks area, central Alaska during 2000-2001. This interdisciplinary study focused on documenting the temporal and spatial chemical variations in arsenic concentrations to elucidate the processes that lead to elevated arsenic concentrations in ground water. Field parameters and water analyses are reported for 17 domestic wells, 13 monitoring well sites, and 3 surface water sites. Sampling occurred during November 2000, February 2001, May 2001, July 2001, and September 2001. Waters in the study area are primarily Ca-HCO3 type, with pH values ranging from 5.97 to 7.87. Dissolved arsenic concentrations ranged...
Categories: Publication; Types: Citation; Tags: Open-File Report
thumbnail
Diel variations of concentrations of unfiltered and filtered total Hg and filtered methyl Hg were documented during 24-h sampling episodes in water from Silver Creek, which drains a historical gold-mining district near Helena, Montana, and the Madison River, which drains the geothermal system of Yellowstone National Park. The concentrations of filtered methyl Hg had relatively large diel variations (increases of 68 and 93% from morning minima) in both streams. Unfiltered and filtered (0.1-μm filtration) total Hg in Silver Creek had diel concentration increases of 24% and 7%, respectively. In the Madison River, concentrations of unfiltered and filtered total Hg did not change during the sampling period. The concentration...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.