Skip to main content

Matthew S. Whitman

thumbnail
We developed photographic techniques to characterize coarse (>2-mm) and fine (≤2-mm) streambed particle sizes in 12 streams in Anchorage, Alaska. Results were compared with current sampling techniques to assess which provided greater sampling efficiency and accuracy. The streams sampled were wadeable and contained gravel—cobble streambeds. Gradients ranged from about 5% at the upstream sites to about 0.25% at the downstream sites. Mean particle sizes and size-frequency distributions resulting from digitized photographs differed significantly from those resulting from Wolman pebble counts for five sites in the analysis. Wolman counts were biased toward selecting larger particles. Photographic analysis also yielded...
thumbnail
In Arctic ecosystems, freshwater fish migrate seasonally between productive shallow water habitats that freeze in winter and deep overwinter refuge in rivers and lakes. How these movements relate to seasonal hydrology is not well understood. We used passive integrated transponder tags and stream wide antennae to track 1035 Arctic grayling in Crea Creek, a seasonally flowing beaded stream on the Arctic Coastal Plain, Alaska. Migration of juvenile and adult fish into Crea Creek peaked in June immediately after ice break-up in the stream. Fish that entered the stream during periods of high flow and cold stream temperature traveled farther upstream than those entering during periods of lower flow and warmer temperature....
thumbnail
Freshwater fishes utilising seasonally available habitats within annual migratory circuits time movements out of such habitats with changing hydrology, although individual attributes of fish may also mediate the behavioural response to environmental conditions. We tagged juvenile Arctic grayling in a seasonally flowing stream on the Arctic Coastal Plain in Alaska and recorded migration timing towards overwintering habitat. We examined the relationship between individual migration date, and fork length (FL) and body condition index (BCI) for fish tagged in June, July and August in three separate models. Larger fish migrated earlier; however, only the August model suggested a significant relationship with BCI. In...
Categories: Publication; Types: Citation; Tags: Ecology of Freshwater Fish
thumbnail
During 2001-2002, the U.S. Geological Survey sampled streambed sediment at 23 sites, measured water quality at 26 sites, and assessed fish habitat for the entire length of Noyes Slough, a 5.5-mile slough of the Chena River in Fairbanks, Alaska. These studies were undertaken to document the environmental condition of the slough and to provide information to the public for consideration in plans to improve environmental conditions of the waterway. The availability of physical habitat for fish in the slough does not appear to be limited, although some beaver dams and shallow water may restrict movement, particularly during low flow. Elevated water temperatures in summer and low dissolved-oxygen concentrations are the...
thumbnail
This report contains the major findings of a 1998?2001 assessment of water quality in the Cook Inlet Basin. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies; universities;...
Categories: Publication; Types: Citation; Tags: Circular
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.