Skip to main content

Mary F. Poteet

thumbnail
Karst aquifers—formed by the dissolution of soluble rocks such as limestone—are critical groundwater resources in North America, and karst springs, caves, and streams provide habitat for unique flora and fauna. Springflow and groundwater levels in karst terrane can change greatly over short time scales, and therefore are likely to respond rapidly to climate change. How might the biological communities and ecosystems associated with karst respond to climate change and accompanying changes in groundwater levels and springflow? Sites in two central U.S. regions—the Balcones Escarpment of south-central Texas and the Black Hills of western South Dakota (fig. 1)—were selected to study climate change and its potential...
Categories: Publication; Types: Citation; Tags: Fact Sheet
thumbnail
Two karst aquifers, the Edwards aquifer in the Balcones Escarpment region of south-central Texas and the Madison aquifer in the Black Hills of western South Dakota, were evaluated for hydrologic response to projected climate change through 2050. Edwards aquifer sites include Barton Springs, the Bexar County Index Well, and Comal Springs. Madison aquifer sites include Spearfish Creek and Rhoads Fork Spring. Climate projections at sites were based on output from the Community Climate System Model of global climate, linked to the Weather Research and Forecasting (WRF) model of regional climate. The WRF model output was bias adjusted to match means for 1981–2010 from records at weather stations near Madison and Edwards...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.