Skip to main content

Mark S. Wipfli

thumbnail
Artificial additions of nutrients of differing forms such as salmon carcasses and analog pellets (i.e. pasteurized fishmeal) have been proposed as a means of stimulating aquatic productivity and enhancing populations of anadromous and resident fishes. Nutrient mitigation to enhance fish production in stream ecosystems assumes that the central pathway by which effects occur is bottom-up, through aquatic primary and secondary production, with little consideration of reciprocal aquatic-terrestrial pathways. The net outcome (i.e. bottom-up vs. top-down) of adding salmon-derived materials to streams depend on whether or not these subsidies indirectly intensify predation on in situ prey via increases in a shared predator...
Categories: Publication; Types: Citation; Tags: Ecosphere
thumbnail
European bird cherry (Prunus padus) (EBC) is an invasive ornamental tree that is spreading rapidly in riparian forests of urban Alaska. To determine how the spread of EBC affects leaf litter processing by aquatic invertebrate shredders, we conducted complementary leaf pack experiments in two streams located in Anchorage, Alaska. The first experiment contrasted invasive EBC with three native tree species—thin-leaf alder (Alnus tenuifolia), paper birch (Betula neoalaskana), and black cottonwood (Populus trichocarpa)—in one reach of Chester Creek; finding that EBC leaf litter broke down significantly faster than birch and cottonwood, but at a similar rate to alder. The second experiment contrasted EBC with alder in...
Categories: Publication; Types: Citation; Tags: Hydrobiologia
thumbnail
Contributions of terrestrial-, freshwater-, and marine-derived prey resources to stream fishes vary over time and space, altering the energy pathways that regulate production. In this study, we determined large-scale use of these resources by juvenile Chinook and coho salmon (Oncorhynchus tshawytscha and Oncorhynchus kisutch, respectively) in the glacial Susitna River, Alaska. We resolved spatial and temporal trophic patterns among multiple macrohabitat types along a 97 km segment of the river corridor via stable isotope and stomach content analyses. Juvenile salmon were supported primarily by freshwater-derived resources and secondarily by marine and terrestrial sources. The relative contribution of marine-derived...
thumbnail
Land use activities often directly and indirectly limit the capacity of freshwater habitats to produce fish. Consequently, habitat creation and enhancement actions are often undertaken to increase the quantity and quality of resources available to aquatic communities within these impaired systems, with the intent to increase fish production. The objectives of this study were to (1) determine whether aquatic community colonization and development could be accelerated through additions of woody debris bundles and marine-derived nutrients (via salmon carcass analog pellets) and (2) measure how aquatic communities (biofilm, invertebrates, and fish) respond to these additions after the creation of off-channel (alcove)...
thumbnail
Invasive species in riparian forests are unique as their effects can transcend ecosystem boundaries via stream‐riparian linkages. The green alder sawfly (Monsoma pulveratum) is an invasive wasp whose larvae are defoliating riparian thin‐leaf alder (Alnus tenuifolia) stands across southcentral Alaska. To test the hypothesis that riparian defoliation by this invasive sawfly negatively affects the flow of terrestrial prey resources to stream fishes, we sampled terrestrial invertebrates on riparian alder foliage, their subsidies to streams and their consumption by juvenile coho salmon (Oncorhynchus kisutch). Invasive sawflies altered the composition of terrestrial invertebrates on riparian alder foliage and as terrestrial...
Categories: Publication; Types: Citation; Tags: Ecology of Freshwater Fish
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.