Skip to main content

Lydia Stefanova

thumbnail
In this paper we examine the variations of the boreal summer season sea breeze circulation along the Florida panhandle coast from relatively high resolution (10 km) regional climate model integrations. The 23 year climatology (1979–2001) of the multidecadal dynamically downscaled simulations forced by the National Centers for Environmental Prediction–Department of Energy (NCEP-DOE) Reanalysis II at the lateral boundaries verify quite well with the observed climatology. The variations at diurnal and interannual time scales are also well simulated with respect to the observations. We show from composite analyses made from these downscaled simulations that sea breezes in northwestern Florida are associated with changes...
Abstract (from http://link.springer.com/article/10.1007%2Fs10113-013-0410-1): Crop models are one of the most commonly used tools to assess the impact of climate variability and change on crop production. However, before the impact of projected climate changes on crop production can be addressed, a necessary first step is the assessment of the inherent uncertainty and limitations of the forcing data used in these crop models. In this paper, we evaluate the simulated crop production using separate crop models for maize (summer crop) and wheat (winter crop) over six different locations in the Southeastern United States forced with multiple sources of actual and simulated weather data. The paper compares the crop production...
thumbnail
Precipitation data from Global Climate Models have been downscaled to smaller regions. Adapting this downscaled precipitation data to a coupled hydrodynamic surface-water/groundwater model of southern Florida allows an examination of future conditions and their effect on groundwater levels, inundation patterns, surface-water stage and flows, and salinity. The downscaled rainfall data include the 1996-2001 time series from the European Center for Medium-Range Weather Forecasting ERA-40 simulation and both the 1996-1999 and 2038-2057 time series from two global climate models: the Community Climate System Model (CCSM) and the Geophysical Fluid Dynamic Laboratory (GFDL). Synthesized surface-water inflow datasets were...
thumbnail
Climate change is likely to have many effects on natural ecosystems in the Southeast U.S. While there is information available to conservation managers and ecologists from the global climate models (GCMs), this information is at too coarse a resolution for use in vulnerability assessments and decision making. To better assess how climate change could affect multiple sectors, including ecosystems, climatologists have created several downscaled climate projections that contain information from GCMs translated to regional or local scales. There are a number of techniques that can be used to create downscaled climate projections, and the number of available downscaled climate projections present challenges to users...
thumbnail
Climate change is likely to have many effects on natural ecosystems in the Southeast U.S. The National Climate Assessment Southeast Technical Report (SETR) indicates that natural ecosystems in the Southeast are likely to be affected by warming temperatures, ocean acidification, sea-level rise, and changes in rainfall and evapotranspiration. To better assess these how climate changes could affect multiple sectors, including ecosystems, climatologists have created several downscaled climate projections (or downscaled datasets) that contain information from the global climate models (GCMs) translated to regional or local scales. The process of creating these downscaled datasets, known as downscaling, can be carried...
Categories: Publication; Types: Citation; Tags: Open-File Report
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.