Skip to main content

Keith H. Nislow

thumbnail
1. Defining functional connectivity between habitats in spatially heterogeneous landscapes is a particular challenge for small-bodied aquatic species. Traditional approaches (e.g. mark–recapture studies) preclude an assessment of animal movement over the life cycle (birth to reproduction), and movement of individuals may not represent the degree of gene movement for fecund species. We investigated the degree of habitat connectivity (defined as the exchange of individuals and genes between mainstem and tributary habitats) in a stream brook trout (Salvelinus fontinalis) population using mark–recapture [passive integrated transponder (PIT) tags], stationary PIT-tag antennae and genetic pedigree data collected over...
Categories: Publication; Types: Citation; Tags: Freshwater Biology
thumbnail
Climate Change Adaptation is a growing field within conservation and natural resource management. Actions taken toward climate change adaptation account for climate impacts and ecological responses, both current and projected into the future. These actions attempt to accomplish a number of goals, including the conservation of wildlife and ecosystems by reducing vulnerability and increasing resilience.Climate change adaptation strategies and approaches for natural resources can be thought of as part of a continuum of potential actions ranging from 1) options or goals to 2) strategies, 3) approaches, and 4) tactics.There are a range of decision support tools and processes to aid climate change adaptation. This document...
Categories: Publication; Types: Citation
thumbnail
Understanding how multiple extrinsic (density-independent) factors and intrinsic (density-dependent) mechanisms influence population dynamics has become increasingly urgent in the face of rapidly changing climates. It is particularly unclear how multiple extrinsic factors with contrasting effects among seasons are related to declines in population numbers and changes in mean body size and whether there is a strong role for density-dependence. The primary goal of this study was to identify the roles of seasonal variation in climate driven environmental direct effects (mean stream flow and temperature) versus density-dependence on population size and mean body size in eastern brook trout (Salvelinus fontinalis). We...
Categories: Publication; Types: Citation; Tags: Global Change Biology
thumbnail
Modelling the effects of environmental change on populations is a key challenge for ecologists, particularly as the pace of change increases. Currently, modelling efforts are limited by difficulties in establishing robust relationships between environmental drivers and population responses.We developed an integrated capture–recapture state-space model to estimate the effects of two key environmental drivers (stream flow and temperature) on demographic rates (body growth, movement and survival) using a long-term (11 years), high-resolution (individually tagged, sampled seasonally) data set of brook trout (Salvelinus fontinalis) from four sites in a stream network. Our integrated model provides an effective context...
Categories: Publication; Types: Citation; Tags: Journal of Animal Ecology
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.