Skip to main content

Kathryn M. Koczot

thumbnail
The Sonoma Valley, located about 30 miles north of San Francisco, is one of several basins in Sonoma County that use a combination of ground water and water delivered from the Russian River for supply. Over the past 30 years, Sonoma Valley has experienced rapid population growth and land-use changes. In particular, there has been a significant increase in irrigated agriculture, predominantly vineyards. To provide a better understanding of the ground-water/surface-water system in Sonoma Valley, the U.S. Geological Survey compiled and evaluated existing data, collected and analyzed new data, and developed a ground-water flow model to better understand and manage the ground-water system. The new data collected include...
thumbnail
This study of the geohydrology and water chemistry of the Alexander Valley, California, was done to provide an improved scientific basis for addressing emerging water-management issues, including potential increases in water demand and changes in flows in the Russian River. The study tasks included (1) evaluation of existing geohydrological, geophysical, and geochemical data; (2) collection and analysis of new geohydrologic data, including subsurface lithologic data, ground-water levels, and streamflow records; and (3) collection and analysis of new water-chemistry data. The estimated total water use for the Alexander Valley for 1999 was approximately 15,800 acre-feet. About 13,500 acre-feet of this amount was for...
thumbnail
The timing of maximum monthly-mean streamflow for the Feather River in northern California has come earlier in the year in recent decades (since the 1950s), as have timings in most rivers throughout California and the western United States. Much of the timing shift in the Feather River basin appears to coincide with interdecadal changes in the North Pacific climate regime. The coincident timing changes are seen as a shift in the month of maximum streamflow from April-May during the cooler Pacific Decadal Oscillation (PDO) phase to March-April during the warmer phase. The change in streamflow timing in the Feather River basin became an issue during the testing of a new set of watershed models of inflow to Lake Oroville,...
Categories: Publication; Types: Citation
thumbnail
This report documents the geographic information system map layers and data files generated for the Santa Clara-Calleguas Basin, Ventura County, as part of a Regional Aquifer- System Analysis of southern California from 1989 to 1995. Thirty-six map layers and four data files are maintained in this geographic information system data base. The map layers cover the Santa Clara-Calleguas drainage basin and are stored in a common map projection. Attributes of the map layers and data files are described and referenced. The map layers are grouped by geography, geology, and hydrology.
Categories: Publication; Types: Citation; Tags: Open-File Report
thumbnail
Precipitation-runoff processes in the Feather River Basin of northern California determine short- and long-term streamflow variations that are of considerable local, State, and Federal concern. The river is an important source of water and power for the region. The basin forms the headwaters of the California State Water Project. Lake Oroville, at the outlet of the basin, plays an important role in flood management, water quality, and the health of fisheries as far downstream as the Sacramento-San Joaquin Delta. Existing models of the river simulate streamflow in hourly, daily, weekly, and seasonal time steps, but cannot adequately describe responses to climate and land-use variations in the basin. New spatially...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.