Skip to main content

Jun Yoneda

thumbnail
Understanding how effectively methane can be extracted from a gas hydrate reservoir requires knowing how compressible, permeable, and strong the overlying seal sediment is. This data release provides results for flow-through permeability, consolidation, and direct shear measurements made on fine-grained seal sediment from Site NGHP-02-08 offshore eastern India. The sediment was collected in a pressure core from the Krishna-Godavari Basin during the 2015 Indian National Gas Hydrate Program Expedition 2 (NGHP-02). Gas hydrate is a crystalline solid that forms naturally in the sediment of certain marine and permafrost environments where pressure is relatively high (equivalent to the pressure measured ~300 meters water...
thumbnail
Understanding how effectively methane can be extracted from a gas hydrate reservoir requires knowing how compressible, permeable, and strong the overlying seal sediment is. This data release provides results for flow-through permeability, consolidation, and direct shear measurements made on fine-grained seal sediment from Site NGHP-02-08 offshore eastern India. The sediment was collected in a pressure core from the Krishna-Godavari Basin during the 2015 Indian National Gas Hydrate Program Expedition 2 (NGHP-02). Gas hydrate is a crystalline solid that forms naturally in the sediment of certain marine and permafrost environments where pressure is relatively high (equivalent to the pressure measured ~300 meters water...
thumbnail
Understanding how effectively methane can be extracted from a gas hydrate reservoir requires knowing how compressible, permeable, and strong the overlying seal sediment is. This data release provides results for flow-through permeability, consolidation, and direct shear measurements made on fine-grained seal sediment from Site NGHP-02-08 offshore eastern India. The sediment was collected in a pressure core from the Krishna-Godavari Basin during the 2015 Indian National Gas Hydrate Program Expedition 2 (NGHP-02). Gas hydrate is a crystalline solid that forms naturally in the sediment of certain marine and permafrost environments where pressure is relatively high (equivalent to the pressure measured ~300 meters water...
thumbnail
Understanding how effectively methane can be extracted from a gas hydrate reservoir requires knowing how compressible, permeable, and strong the overlying seal sediment is. This data release provides results for flow-through permeability, consolidation, and direct shear measurements made on fine-grained seal sediment from Site NGHP-02-08 offshore eastern India. The sediment was collected in a pressure core from the Krishna-Godavari Basin during the 2015 Indian National Gas Hydrate Program Expedition 2 (NGHP-02). Gas hydrate is a crystalline solid that forms naturally in the sediment of certain marine and permafrost environments where pressure is relatively high (equivalent to the pressure measured ~300 meters water...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.