Skip to main content

Jim Jacobi

thumbnail
Over the past century, Hawaiʻi has experienced a pronounced decline in precipitation and stream flow and a number of severe droughts. These changes can have wide-reaching implications, affecting the water supply, native vegetation and wildlife, wildfire patterns, and the spread of invasive species. Several climate-related factors are influencing Hawaiˈi’s landscapes and contributing to these changes. These include climate change, climate variability, and drought (referred to collectively as CCVD). Climate variability describes how the climate fluctuates on a yearly basis around average values, while climate change describes patterns of long-term continuous change in the average. While it is understood that CCVD...
thumbnail
Precipitation in Hawaiʻi’s higher elevation upland areas provides needed water to both people and ecosystems. Once it reaches the ground, rain can either run off and contribute to water flow in streams, or it can infiltrate into the ground and provide water for plants and recharge aquifers and groundwater. The exact route that water takes is controlled by many factors, including the duration and intensity of rainfall, the topography of the land, soil properties, and vegetation. The introduction and spread of invasive plants and animals in Hawaiian forests, which alters the water-use and soil characteristics of ecosystems, can have large impacts on downstream water users. Increased demand and competition for limited...
thumbnail
This feature class contains vegetation polygons for the upland areas on the island of Hawaii (Big Island). This map was orignally plotted on 1:24000-scale map sheets, using aerial photos taken in the years 1976-1977. Thus this map represents a snapshot of the vegetation at this time. The original mapping project was part of the the Hawaii Forest Bird Survey, and consequently only bird habitat areas of interest (495,454 ha or 47% of the island) were mapped. This dataset has the most detailed level of mapping, including information on canopy cover, canopy height, dominant tree species composition, species association type, dominant understory composition, and other information pertaining to the map unit.
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.