Skip to main content

Jennifer A. Hoeting

thumbnail
Our ability to infer unobservable disease-dynamic processes such as force of infection (infection hazard for susceptible hosts) has transformed our understanding of disease transmission mechanisms and capacity to predict disease dynamics. Conventional methods for inferring FOI estimate a time-averaged value and are based on population-level processes. Because many pathogens exhibit epidemic cycling and FOI is the result of processes acting across the scales of individuals and populations, a flexible framework that extends to epidemic dynamics and links within-host processes to FOI is needed. Specifically, within-host antibody kinetics in wildlife hosts can be short-lived and produce patterns that are repeatable...
Categories: Publication; Types: Citation; Tags: Ecology Letters
thumbnail
Climate change poses major challenges for conservation and management because it alters the area, quality, and spatial distribution of habitat for natural populations. To assess species’ vulnerability to climate change and target ongoing conservation investments, researchers and managers often consider the effects of projected changes in climate and land use on future habitat availability and quality and the uncertainty associated with these projections. Here, we draw on tools from hydrology and climate science to project the impact of climate change on the density of wetlands in the Prairie Pothole Region of the USA, a critical area for breeding waterfowl and other wetland-dependent species. We evaluate the potential...
Categories: Publication; Types: Citation; Tags: Ecological Applications
thumbnail
Climate change poses major challenges for conservation and management because it alters the area, quality, and spatial distribution of habitat for natural populations. To assess species’ vulnerability to climate change and target ongoing conservation investments, researchers and managers often consider the effects of projected changes in climate and land use on future habitat availability and quality and the uncertainty associated with these projections. Here, we draw on tools from hydrology and climate science to project the impact of climate change on the density of wetlands in the Prairie Pothole Region of the USA, a critical area for breeding waterfowl and other wetland-dependent species. We evaluate the potential...
thumbnail
In a spatial regression context, scientists are often interested in a physical interpretation of components of the parametric covariance function. For example, spatial covariance parameter estimates in ecological settings have been interpreted to describe spatial heterogeneity or “patchiness” in a landscape that cannot be explained by measured covariates. In this article, we investigate the influence of the strength of spatial dependence on maximum likelihood (ML) and restricted maximum likelihood (REML) estimates of covariance parameters in an exponential-with-nugget model, and we also examine these influences under different sampling designs—specifically, lattice designs and more realistic random and cluster designs—at...
thumbnail
In spatial generalized linear mixed models (SGLMMs), covariates that are spatially smooth are often collinear with spatially smooth random effects. This phenomenon is known as spatial confounding and has been studied primarily in the case where the spatial support of the process being studied is discrete (e.g., areal spatial data). In this case, the most common approach suggested is restricted spatial regression (RSR) in which the spatial random effects are constrained to be orthogonal to the fixed effects. We consider spatial confounding and RSR in the geostatistical (continuous spatial support) setting. We show that RSR provides computational benefits relative to the confounded SGLMM, but that Bayesian credible...
Categories: Publication; Types: Citation; Tags: Environmetrics
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.