Skip to main content

Jason M. Stoker

While this technology has proven its use as a mapping tool - effective for generating bare earth DEMs at high resolutions (1-3 m) and with high vertical accuracies (15-18 cm) - obstacles remain for its application as a remote sensing tool: * The high cost of collecting LIDAR * The steep learning curve on research and application of using the entire point cloud * The challenges of discovering whether data exist for regions of interest
Categories: Publication; Types: Citation; Tags: Fact Sheet
Long-term, interdisciplinary studies of relations between climate and ecological conditions on wetland-upland landscapes have been lacking, especially studies integrated across scales meaningful for adaptive resource management. We collected data in situ at individual wetlands, and via satellite for surrounding 4-km2 landscape blocks, to assess relations between annual weather dynamics, snow duration, phenology, wetland surface-water availability, amphibian presence and calling activity, greenness, and evapotranspiration in four U.S. conservation areas from 2008 to 2012. Amid recent decades of relatively warm growing seasons, 2012 and 2010 were the first and second warmest seasons, respectively, dating back to 1895....
Categories: Publication; Types: Citation; Tags: PLoS ONE
Over the past five to ten years the use and applicability of light detection and ranging (lidar) technology has increased dramatically. As a result, an almost exponential amount of lidar data is being collected across the country for a wide range of applications, and it is currently the technology of choice for high resolution terrain model creation, 3-dimensional city and infrastructure modeling, forestry and a wide range of scientific applications (Lin and Mills, 2010). The amount of data that is being delivered across the country is impressive. For example, the U.S. Geological Survey’s (USGS) Center for Lidar Information Coordination and Knowledge (CLICK), which is a National repository of USGS and partner lidar...
The 3D Elevation Program (3DEP) initiative is accelerating the rate of three-dimensional (3D) elevation data collection in response to a call for action to address a wide range of urgent needs nationwide. It began in 2012 with the recommendation to collect (1) high-quality light detection and ranging (lidar) data for the conterminous United States (CONUS), Hawaii, and the U.S. territories and (2) interferometric synthetic aperture radar (ifsar) data for Alaska. Specifications were created for collecting 3D elevation data, and the data management and delivery systems are being modernized. The National Elevation Dataset (NED) will be completely refreshed with new elevation data products and services. The call for...
Categories: Publication; Types: Citation; Tags: Circular
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact