Skip to main content

Hannah M Cooper

Sea-level rise (SLR) threatens islands and coastal communities due to vulnerable infrastructure and populations concentrated in low-lying areas. LiDAR (Light Detection and Ranging) data were used to produce high-resolution DEMs (Digital Elevation Model) for Kahului and Lahaina, Maui, to assess the potential impacts of future SLR. Two existing LiDAR datasets from USACE (U.S. Army Corps of Engineers) and NOAA (National Oceanic and Atmospheric Administration) were compared and calibrated using the Kahului Harbor tide station. Using tidal benchmarks is a valuable approach for referencing LiDAR in areas lacking an established vertical datum, such as in Hawai‘i and other Pacific Islands. Exploratory analysis of the USACE...
Global sea-level rise (SLR) is projected to accelerate over the next century, with research indicating that global mean sea level may rise 18–48 cm by 2050, and 50–140 cm by 2100. Decision-makers, faced with the problem of adapting to SLR, utilize elevation data to identify assets that are vulnerable to inundation. This paper reviews techniques and challenges stemming from the use of Light Detection and Ranging (LiDAR) digital elevation models (DEMs) in support of SLR decision-making. A significant shortcoming in the methodology is the lack of comprehensive standards for estimating LiDAR error, which causes inconsistent and sometimes misleading calculations of uncertainty. Workers typically aim to reduce uncertainty...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.