Skip to main content

Elsevier

thumbnail
A pore network model with cubic chambers and rectangular tubes was used to estimate the nonaqueous phase liquid (NAPL) dissolution rate coefficient, Kdissai, and NAPL/water total specific interfacial area, ai. Kdissai was computed as a function of modified Peclet number(Pe′) for various NAPL saturations (SN) and ai during drainage and imbibition and during dissolution without displacement. The largest contributor to ai was the interfacial area in the water-filled corners of chambers and tubes containing NAPL. When Kdissai was divided by ai, the resulting curves of dissolution coefficient, Kdiss versus Pe′ suggested that an approximate value of Kdiss could be obtained as a weak function of hysteresis or SN. Spatially...
thumbnail
Hydrologists often attempt to estimate formation properties from aquifer tests for which only the hydraulic responses in a pumped well are available. Borehole storage, turbulent head losses, and borehole skin, however, can mask the hydraulic behavior of the formation inferred from the water level in the pumped well. Also, in highly permeable formations or in formations at significant depth below land surface, where there is a long column of water in the well casing, oscillatory water levels may arise during the onset of pumping to further mask formation responses in the pumped well. Usually borehole phenomena are confined to the early stages of pumping or recovery, and late-time hydraulic data can be used to estimate...
Categories: Publication; Types: Citation; Tags: Journal of Hydrology
thumbnail
The crystallization of calcium carbonate minerals plays an integral role in the water chemistry of terrestrial ecosystems. Humic substances, which are ubiquitous in natural waters, have been shown to reduce or inhibit calcite crystal growth in experiments. The purpose of this study is to quantify and understand the kinetic effects of hydrophobic organic acids isolated from the Florida Everglades and a fulvic acid from Lake Fryxell, Antarctica, on the crystal growth of calcite (CaCO3). Highly reproducible calcite growth experiments were performed in a sealed reactor at constant pH, temperature, supersaturation (Ω = 4.5), PCO2(10−3.5atm), and ionic strength (0.1 M) with various concentrations of organic acids. Higher...
thumbnail
Extensive research has been conducted regarding the occurrence of herbicides in the hydrologic system, their fate, and their effects on human health and the environment. Few studies, however, have considered herbicide transformation products (degradates). In this study of Iowa ground water, herbicide degradates were frequently detected. In fact, herbicide degradates were eight of the 10 most frequently detected compounds. Furthermore, a majority of a herbicide's measured concentration was in the form of its degradates — ranging from 55 to over 99%. The herbicide detection frequencies and concentrations varied significantly among the major aquifer types sampled. These differences, however, were much more pronounced...
thumbnail
During the summer of 1997, water samples were collected and analyzed for pesticides from 32 playa lakes of the High Plains that receive drainage from both cotton and corn agriculture in West Texas. The major cotton herbicides detected in the water samples were diuron, fluometuron, metolachlor, norflurazon, and prometryn. Atrazine and propazine, corn and sorghum herbicides, were also routinely detected in samples from the playa lakes. Furthermore, the metabolites of all the herbicides studied were found in the playa lake samples. In some cases, the concentration of metabolites was equal to or exceeded the concentration of the parent compound. The types of metabolites detected suggested that the parent compounds had...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.